Different Types of Stars in the Universe

Updated on June 13, 2016
Thomas Swan profile image

Dr. Thomas Swan is a published physicist who received his Ph.D. in nuclear astrophysics from the University of Surrey.

Hubble Telescope image of a star forming region in the Large Magellanic Cloud.
Hubble Telescope image of a star forming region in the Large Magellanic Cloud. | Source

Stars are enormous spheres of ignited gas that light the cosmos, and seed it with the materials for rocky worlds and living beings. They come in many different types and sizes, from smouldering white dwarfs to blazing red giants.

Stars are often classified according to spectral type. Although they emit all colors of light, spectral classification considers only the peak of this emission as an indicator of the star's surface temperature. Using this system, blue stars are the hottest, and are called O-type. The coolest stars are red and are called M-type. In order of increasing temperature, the spectral classes are M (red), K (orange), G (yellow), F (yellow-white), A (white), B (blue-white), O (blue).

This bland categorization is often abandoned for a more descriptive alternative. As the coolest stars (red) are invariably the smallest, they are called red dwarfs. Conversely, the hottest stars are often called blue giants.

There are a number of physical characteristics that vary for each of the different types of star. These include the surface temperature, luminosity (brightness), mass (weight), radius (size), lifetime, prevalence in the cosmos, and point in the stellar evolutionary cycle.

Sun: Physical Characteristics

  • Lifetime: 10 billion years
  • Evolution: middle (4.5 billion years)
  • Luminosity: 3.846 × 1026 W
  • Temperature: 5,500 °C
  • Spectral Type: G (yellow)
  • Radius: 695,500 km
  • Mass: 1.98 × 1030 kg

When considering these physical features, the different kinds of star are usually compared with our nearest stellar companion, the Sun. The box to the right gives the solar values.

To understand the scale, the notation, 1026 means the number has 26 zeroes after it. The types of star identified below will be described in terms of the Sun. For example, a mass of 2 means two solar masses.

The Sun; a yellow dwarf star.
The Sun; a yellow dwarf star. | Source

1. Yellow Dwarf Stars

  • Lifetime: 4 - 17 billion years
  • Evolution: early, middle
  • Temperature: 5,000 - 7,300 °C
  • Spectral Types: G, F
  • Luminosity: 0.6 - 5.0
  • Radius: 0.96 - 1.4
  • Mass: 0.8 - 1.4
  • Prevalence: 10%

The Sun, Alpha Centauri A, and Kepler-22 are yellow dwarfs. These stellar cauldrons are in the prime of their lives because they are burning hydrogen fuel in their cores. This normal functioning places them on the `main sequence', where the majority of stars are found. The designation `yellow dwarf' may be imprecise, as these stars typically have a whiter color. However, they do appear yellow when observed through the Earth's atmosphere.

An orange dwarf called Epsilon Eridani (left) is shown next to our Sun in this illustration.
An orange dwarf called Epsilon Eridani (left) is shown next to our Sun in this illustration. | Source

2. Orange Dwarf Stars

  • Lifetime: 17 - 73 billion years
  • Evolution: early, middle
  • Temperature: 3,500 - 5,000 °C
  • Spectral Types: K
  • Luminosity: 0.08 - 0.6
  • Radius: 0.7 - 0.96
  • Mass: 0.45 - 0.8
  • Prevalence: 11%

Alpha Centauri B and Epsilon Eridani are orange dwarf stars. These are smaller, cooler, and live longer than yellow dwarfs like our Sun. Like their larger counterparts, they are main sequence stars fusing hydrogen in their cores.

Binary red dwarf stars. The smaller star, Gliese 623B, is only 8% of the Sun's mass.
Binary red dwarf stars. The smaller star, Gliese 623B, is only 8% of the Sun's mass. | Source

3. Red Dwarf Stars

  • Lifetime: 73 - 5500 billion years
  • Evolution: early, middle
  • Temperature: 1,800 - 3,500 °C
  • Spectral Types: M
  • Luminosity: 0.0001 - 0.08
  • Radius: 0.12 - 0.7
  • Mass: 0.08 - 0.45
  • Prevalence: 73%

Proxima Centauri, Barnard's Star and Gliese 581 are all red dwarfs. They are the smallest kind of main sequence star. Red dwarfs are barely hot enough to maintain the nuclear fusion reactions required to use their hydrogen fuel. However, they are the most common type of star, owing to their remarkably long lifetime that exceeds the current age of the universe (13.8 billion years). This is due to a slow rate of fusion, and an efficient circulation of hydrogen fuel via convective heat transport.

Two tiny brown dwarfs in a binary system.
Two tiny brown dwarfs in a binary system. | Source

4. Brown Dwarfs

  • Lifetime: unknown (long)
  • Evolution: not evolving
  • Temperature: 0 - 1,800 °C
  • Spectral Types: L, T, Y (after M)
  • Luminosity: ~0.00001
  • Radius: 0.06 - 0.12
  • Mass: 0.01 - 0.08
  • Prevalence: unknown (many)

Brown dwarfs are substellar objects that never accumulated enough material to become stars. They are too small to generate the heat required for hydrogen fusion. Brown Dwarfs constitute the midpoint between the smallest red dwarf stars and massive planets like Jupiter. They are the same size as Jupiter, but to qualify as a brown dwarf, they must be at least 13 times heavier. Their cold exteriors emit radiation beyond the red region of the spectrum, and to the human observer they appear magenta rather than brown. As brown dwarfs gradually cool, they become difficult to identify, and it is unclear how many exist.

A close-up of the blue giant star, Rigel. It is 78 times larger than the Sun.
A close-up of the blue giant star, Rigel. It is 78 times larger than the Sun. | Source

5. Blue Giant Stars

  • Lifetime: 3 - 4,000 million years
  • Evolution: early, middle
  • Temperature: 7,300 - 200,000 °C
  • Spectral Types: O, B, A
  • Luminosity: 5.0 - 9,000,000
  • Radius: 1.4 - 250
  • Mass: 1.4 - 265
  • Prevalence: 0.7%

Blue giants are defined here as large stars with at least a slight blueish coloration, although definitions do vary. A broad definition has been chosen because only about 0.7% of stars fall into this category.

Not all blue giants are main sequence stars. Indeed, the largest and hottest (O-type) burn through the hydrogen in their cores very quickly, causing their outer layers to expand and their luminosity to increase. Their high temperature means they remain blue for much of this expansion (e.g. Rigel), but eventually they may cool to become a red giant, supergiant or hypergiant.

Blue supergiants above about 30 solar masses can begin throw off huge swathes of their outer layers, exposing a super hot and luminous core. These are called Wolf-Rayet stars. These massive stars are more likely to explode in a supernova before they can cool to reach a later evolutionary stage, such as a red supergiant. After a supernova, the stellar remnant becomes a neutron star or a black hole.

A close-up of the dying red giant star, T Leporis. It is 100 times larger than the Sun.
A close-up of the dying red giant star, T Leporis. It is 100 times larger than the Sun. | Source

6. Red Giant Stars

  • Lifetime: 0.1 - 2 billion years
  • Evolution: late
  • Temperature: 3,000 - 5,000 °C
  • Spectral Types: M, K
  • Luminosity: 100 - 1000
  • Radius: 20 - 100
  • Mass: 0.3 - 10
  • Prevalence: 0.4%

Aldebaran and Arcturus are red giants. These stars are in a late evolutionary phase. Red giants would previously have been main sequence stars (such as the Sun) with between 0.3 and 10 solar masses. Smaller stars do not become red giants because, due to convective heat transport, their cores cannot become dense enough to generate the heat needed for expansion. Larger stars become red supergiants or hypergiants.

In red giants, the accumulation of helium (from hydrogen fusion) causes a contraction of the core that raises the internal temperature. This triggers hydrogen fusion in the outer layers of the star, causing it to grow in size and luminosity. Due to a larger surface area, the surface temperature is actually lower (redder). They eventually eject their outer layers to form a planetary nebula, while the core becomes a white dwarf.

Betelgeuse, a red supergiant, is a thousand times larger than the Sun.
Betelgeuse, a red supergiant, is a thousand times larger than the Sun. | Source

7. Red Supergiant Stars

  • Lifetime: 3 - 100 million years
  • Evolution: late
  • Temperature: 3,000 - 5,000 ºC
  • Spectral Types: K, M
  • Luminosity: 1,000 - 800,000
  • Radius: 100 - 1650
  • Mass: 10 - 40
  • Prevalence: 0.0001%

Betelgeuse and Antares are red supergiants. The largest of these types of stars are called red hypergiants. One of these is 1650 times the size of our Sun (NML Cygni), and is the largest known star in the universe. NML Cygni is 5,300 light years away from the Earth.

Like red giants, these stars have swelled up due to the contraction of their cores, however, they typically evolve from blue giants and supergiants with between 10 and 40 solar masses. Higher mass stars shed their layers too quickly, becoming Wolf-Rayet stars, or exploding in supernovae. Red supergiants eventually destroy themselves in a supernova, leaving behind a neutron star or black hole.

The tiny companion of Sirius A is a white dwarf called Sirius B (see lower left).
The tiny companion of Sirius A is a white dwarf called Sirius B (see lower left). | Source

8. White Dwarfs

  • Lifetime: 1015- 1025 years
  • Evolution: dead, cooling
  • Temperature: 4,000 - 150,000 ºC
  • Spectral Types: D (degenerate)
  • Luminosity: 0.0001 - 100
  • Radius: 0.008 - 0.2
  • Mass: 0.1 - 1.4
  • Prevalence: 4%

Stars less than 10 solar masses will shed their outer layers to form planetary nebulae. They will typically leave behind an Earth-sized core of less than 1.4 solar masses. This core will be so dense that the electrons within its volume will be prevented from occupying any smaller region of space (becoming degenerate). This physical law (Pauli's exclusion principle) prevents the stellar remnant from collapsing any further.

The remnant is called a white dwarf, and examples include Sirius B and Van Maanen's star. More than 97% of stars are theorized to become white dwarfs. These super hot structures will remain hot for trillions of years before cooling to become black dwarfs.

Artistic impression of how a black dwarf may appear against a backdrop of stars.
Artistic impression of how a black dwarf may appear against a backdrop of stars.

9. Black Dwarfs

  • Lifetime: unknown (long)
  • Evolution: dead
  • Temperature: < -270 °C
  • Spectral Types: none
  • Luminosity: infinitesimal
  • Radius: 0.008 - 0.2
  • Mass: 0.1 - 1.4
  • Prevalence: ~0%

Once a star has become a white dwarf, it will slowly cool to become a black dwarf. As the universe is not old enough for a white dwarf to have cooled sufficiently, no black dwarfs are thought to exist at this time.

The Crab pulsar; a neutron star at the heart of the Crab Nebula (central bright dot) .
The Crab pulsar; a neutron star at the heart of the Crab Nebula (central bright dot) . | Source

10. Neutron Stars

  • Lifetime: unknown (long)
  • Evolution: dead, cooling
  • Temperature: < 2,000,000 ºC
  • Spectral Types: D (degenerate)
  • Luminosity: ~0.000001
  • Radius: 5 - 15 km
  • Mass: 1.4 - 3.2
  • Prevalence: 0.7%

When stars larger than about 10 solar masses exhaust their fuel, their cores dramatically collapse to form neutron stars. If the core has a mass above 1.4 solar masses, electron degeneracy will be unable to halt the collapse. Instead, the electrons will fuse with protons to produce neutral particles called neutrons, which are compressed until they can no longer occupy a smaller space (becoming degenerate).

The collapse throws off the outer layers of the star in a supernova explosion. The stellar remnant, composed almost entirely of neutrons, is so dense that it occupies a radius of about 12 km. Due to conservation of angular momentum, neutron stars are often left in a rapidly rotating state called a pulsar.

Stars larger than 40 solar masses with cores larger than about 2.5 solar masses are likely to become black holes instead of neutron stars. For a black hole to form, the density must become great enough to overcome neutron degeneracy, causing a collapse into a gravitational singularity.

While stellar classification is more precisely described in terms of spectral type, this does very little to fire the imagination of those who will become the next generation of astrophysicists. There are many different types of stars in the universe, and it's no surprise that those with the most exotic sounding names receive the greatest levels of attention.

Questions & Answers


      0 of 8192 characters used
      Post Comment

      • profile image


        2 weeks ago

        you fart

      • profile image


        2 weeks ago

        this is really good !!!!!!

      • profile image

        Me (A Kid) 

        2 weeks ago

        This article helped me a lot for my science project

        -Youtube channel (PhantomMax9)

      • profile image


        3 weeks ago

        These information completely answered all my questions about stars, thanks alot.

      • profile image

        hans carlos 

        5 weeks ago

        very helpful thx bro

      • Thomas Swan profile imageAUTHOR

        Thomas Swan 

        4 months ago from New Zealand

        Hi Vic. To my knowledge, each star in a binary pair conforms with one of the types described here. And, Mercury-Manganese stars simply have an abundance of those elements in their atmospheres, but fit the profile of a blue giant by the (broad) definition given here. They still burn hydrogen and helium.

      • profile image

        Vic fedorov 

        4 months ago

        What about binary stars? What about mercury magnesium stars burning other than hydrogen or helium.

      • profile image


        6 months ago

        This is really helpful

      • profile image

        Love science 

        7 months ago

        this really helped me

      • profile image


        7 months ago

        Hey that's pretty good,

        sucks that I'm color blind

      • profile image

        space learner 34 

        7 months ago

        so much good to learn! i was glad cause i needed it for a project about space

      • profile image

        Hacker 52 

        7 months ago

        really helpful!!!

      • profile image


        9 months ago

        Thank you for this info Dr.Thomas Swan it's a great big help for me and the others

      • profile image

        Dj Soundwave 

        10 months ago

        Dr. Swan hit it out of the park with this. I never really thought about why when I heard “if you weight a teaspoon of neutron stat on earth, it would be A LOT”. After this article, I have a picture painted in my head about why. Electron degeneracy is the culprit. Being unable to occupy smaller space. Duh when I say it tho. Great article!!

      • profile image

        Yeon Hwa Kim 

        10 months ago

        Wow!!thanks for that very educational info !!!!it is a great help for me!!!

      • profile image


        12 months ago

        no blue super giant or blue hyper giant

      • profile image


        12 months ago

        Thank you soooooo much for all these information, it helped me a lot in my presentation...;)

      • profile image

        alyssa morgan haaff 

        12 months ago

        it is cool to learn so much about stars

      • profile image

        Anonymous person 

        13 months ago

        Cool facts.

      • profile image


        19 months ago

        So Cool. Great Info best website for stars! :)

      • profile image


        19 months ago

        where is the black hole? in math/science class my math teacher said that every star starts as a nebula and if they turn into a high-mass proto star and they either end as a neutron star like you have or a black hole, so could you maybe add the black hole on your spare time


      • profile image

        hala at ya home boy 

        21 months ago

        very educational. This website really helps when it comes to learning about stars.

      • profile image


        21 months ago

        Dude Great presentation and i will always support your presentation!

      • profile image

        Robo girl 33 

        23 months ago

        Perfect info great for kids

      • profile image


        2 years ago

        Very good! It helped me a lot. I used this website for extracurricular research

      • dougwest1 profile image

        Doug West 

        2 years ago from Raymore, MO

        Reading you Hub makes me want to go out and look at the stars tonight. I haven't taken my telescope outside in a while.

      • adevwriting profile image

        Arun Dev 

        3 years ago from United Countries of the World

        Stars are amazing!

      • Kristen Howe profile image

        Kristen Howe 

        3 years ago from Northeast Ohio

        Beautiful, Thomas! I love stars, especially if I can see them on a clear night without any obstructions. Very useful and informative knowledge. I always make a wish on them, too, if I can...

      • Thomas Swan profile imageAUTHOR

        Thomas Swan 

        3 years ago from New Zealand

        Glad to be of help allyssa.

      • profile image

        allyssa jhane liberato 

        3 years ago

        it helps me for doing my assignments fastly

      • Thomas Swan profile imageAUTHOR

        Thomas Swan 

        4 years ago from New Zealand

        Thanks m abdullah. Glad you liked it.

      • m abdullah javed profile image

        muhammad abdullah javed 

        4 years ago

        You have nicely dealt with the details of the starts of our known galaxies. Thank you Thomas. Voted interesting up.

      • Thomas Swan profile imageAUTHOR

        Thomas Swan 

        4 years ago from New Zealand

        Thanks Ruby! Sorry I missed your comment before. I've been going through my hubs and finding some of the comments I missed. I'm glad you found it interesting! :)

      • Ruby H Rose profile image

        Maree Michael Martin 

        4 years ago from Northwest Washington on an Island

        Wow, so very cool to learn so much more about stars.

      • Thomas Swan profile imageAUTHOR

        Thomas Swan 

        4 years ago from New Zealand

        Thanks for commenting Alliah. The Sun burns without oxygen because oxygen is only needed for chemical reactions in which bonds between atoms are formed. The Sun burns via nuclear reactions in which nuclear particles (protons and neutrons) and bonded together. The nuclear scale is smaller than the atomic scale (remember, each atom contains a nucleus). The nuclear scale doesn't need oxygen, but it does need very high temperatures and pressures, such as those found in stars.

      • profile image


        4 years ago

        These are the most interesting, thing that I have ever read in my life.

        As of today, in the question .How does the sunburn with out oxygen?

        But seriously how does the sun burn without any oxygen in the outer space.Can someone tell me about this one I just really want to know,

        as if!

      • Thomas Swan profile imageAUTHOR

        Thomas Swan 

        4 years ago from New Zealand

        That's an interesting question. Would like to know why you've asked it before answering. If you've found a copy somewhere on the web, please let me know asap.

      • profile image


        4 years ago

        when was this article published

      • Thomas Swan profile imageAUTHOR

        Thomas Swan 

        5 years ago from New Zealand

        Thanks for commenting lone77star. I suppose one could say that the most interesting planets are around the least interesting stars; so perhaps that is their consolation prize. I agree that in terms of chemical composition, the most interesting stars are the metal-rich, 2nd/3rd generation ones.

      • lone77star profile image

        Rod Martin Jr 

        5 years ago from Cebu, Philippines

        I've never really been fascinated with the exotic types. I go in for the more ordinary, main sequence -- what I call "mid-dwarfs" (F2V - K2V). Especially, the ancient, metal-rich variety, where habitable planets might be found.

      • Thomas Swan profile imageAUTHOR

        Thomas Swan 

        5 years ago from New Zealand

        Thanks for the kind words Rob! I think my fascination for this topic allowed me to finish because it's seemingly impossible to find all of this information in one place on the web. My astrophysics background helped, but I must have used about 20 different sources, and the whole article took two days to finish! I read science fiction too. In my opinion it's the genre that gives the greatest license for the human imagination to flourish.

      • Rob Winters profile image

        Rob Winters 

        5 years ago

        A most interesting and comprehensive hub Thomas. Great layout and presentation too. A stellar hub in every sense :-) Voting up & interesting.

        I read a lot of Science Fiction so i was familiar with a lot of the terminology and star types and found the details and breakdown of this subject matter most fascinating and informative.


      This website uses cookies

      As a user in the EEA, your approval is needed on a few things. To provide a better website experience, owlcation.com uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

      For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at: https://owlcation.com/privacy-policy#gdpr

      Show Details
      HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
      LoginThis is necessary to sign in to the HubPages Service.
      Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
      AkismetThis is used to detect comment spam. (Privacy Policy)
      HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
      HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
      Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
      CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
      Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the googleapis.com or gstatic.com domains, for performance and efficiency reasons. (Privacy Policy)
      Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
      Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
      Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
      Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
      Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
      VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
      PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
      Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
      MavenThis supports the Maven widget and search functionality. (Privacy Policy)
      Google AdSenseThis is an ad network. (Privacy Policy)
      Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
      Index ExchangeThis is an ad network. (Privacy Policy)
      SovrnThis is an ad network. (Privacy Policy)
      Facebook AdsThis is an ad network. (Privacy Policy)
      Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
      AppNexusThis is an ad network. (Privacy Policy)
      OpenxThis is an ad network. (Privacy Policy)
      Rubicon ProjectThis is an ad network. (Privacy Policy)
      TripleLiftThis is an ad network. (Privacy Policy)
      Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
      Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
      Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
      Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
      ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
      Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)