AcademiaAgriculture & FarmingHumanitiesSocial SciencesSTEM
  • »
  • »
  • Protein Functions in the Human Body and in Cells

Protein Functions in the Human Body and in Cells

Updated on August 12, 2014
AliciaC profile image

Linda Crampton is a teacher with an honours degree in biology. She enjoys writing about human biology and the science of health and disease.

Salmon is a great source of protein and amino acids.
Salmon is a great source of protein and amino acids. | Source

Proteins are vital components of our bodies. They form part of the body's structure and perform many essential functions, such as allowing us to move, distributing oxygen around the body, clotting blood when we're wounded, fighting infections, transporting substances into and out of cells, carrying out chemical reactions and carrying messages from one part of the body to another.

Protein molecules are made of chains of amino acids. Our bodies digest the proteins that we eat, converting them into individual amino acids that are absorbed into the bloodstream. The body can also make certain amino acids. Our cells then combine specific amino acids in a specific order to make the proteins that we need.

Good sources of protein in the diet include meat, poultry, fish, dairy products, eggs, legumes or pulses (beans, lentils and peas) and nuts. Most nutritionists recommend that we eat lean meats and low fat dairy (if meats and dairy are part of our diet).

Red blood cells get their color from a protein called hemoglobin, which transports oxygen in the blood.
Red blood cells get their color from a protein called hemoglobin, which transports oxygen in the blood. | Source

B Cells and Antibodies

Blood Proteins

Red blood cells contain a protein called hemoglobin, which gives the cells their color. Hemoglobin picks up oxygen from the lungs. As the red blood cells travel around the body the hemoglobin releases oxygen to the tissue cells. Cells need this oxygen to make energy from the digested food and to produce substances that they need.

The liquid part of blood is called blood plasma. It contains a protein called fibrinogen, which is involved in the blood clotting process. When a blood vessel is broken a series of chemical reactions convert fibrinogen into a solid protein called fibrin. The fibrin fibers form a mesh over the wounded area which traps escaping blood. The mesh and the trapped blood form the blood clot.

Another dissolved protein in blood, called albumin, helps to keep water in the blood and maintain the correct blood volume. Albumin also transports bilirubin to the liver. Bilirubin is a waste substance made from the breakdown of hemoglobin in old and damaged red blood cells. The liver converts the bilirubin into a form that can be excreted.

Blood also contains antibodies, which are proteins made by a type of white blood cell called a B lymphocyte or a B cell. The antibodies help fight invaders such as bacteria and viruses. In addition, certain blood proteins and certain proteins attached to the cell membrane form a system known as the complement system. The complement system has a number of functions in the immune system. For example, activated complement molecules cause the attraction of phagocytes – white blood cells that engulf and destroy invaders – when an infection is present. Complement molecules also cause lysis (bursting) of bacteria.

A cross section through skeletal muscle fibers and a nerve bundle
A cross section through skeletal muscle fibers and a nerve bundle | Source

Muscle Proteins

Actin and myosin are proteins which exist as filaments in muscles. When calcium ions are present the filaments slide over each other, causing the muscle to contract.

Myoglobin is a red pigment in muscles that binds to oxygen. It releases the oxygen to the muscle cells when they need to produce energy.

Ferritin is a protein in cells that stores iron and releases it when it’s needed. Ferritin is found in the skeletal muscles and also in the liver, spleen, bone marrow and other areas of the body. A small amount of ferritin is present in blood.

Structure of The Cell Membrane

A section of a cell membrane, showing the proteins embedded in and attached to the membrane
A section of a cell membrane, showing the proteins embedded in and attached to the membrane | Source

Cell Membrane Proteins from the Kahn Academy

Proteins in Cell Membranes

The outer layer of cells is called the cell membrane. The membrane is made of a double layer of phospholipids (the "phospholipid bilayer"), cholesterol molecules and protein molecules.

Membrane proteins are classified into three categories.

  • Peripheral proteins are present at the surface of a membrane but may extend a short distance into the phospholipid bilayer. The bond between a peripheral protein and the cell membrane is temporary.
  • Integral proteins are not only present on the membrane surface but also penetrate the membrane. The bond between an integral protein and phospholipid is permanent.
  • Lipid-bound proteins are located entirely within the phospholipid bilayer and don't extend to either membrane surface. They are rarer than the other types of membrane proteins.

Cheese provides us with amino acids.
Cheese provides us with amino acids. | Source

Functions of Cell Membrane Proteins

The protein molecules in membranes have a variety of functions. Some form channels that allow substances to move through the membrane; others carry substances through the cell membrane. Some membrane proteins act as enzymes and cause chemical reactions to take place. Other proteins are receptors, which join to specific substances at the surface of the cell.

An example of a receptor in action is the joining of insulin to a receptor protein. Insulin is a protein hormone made by the pancreas. The union of the insulin and the receptor protein causes the membrane to become more permeable to glucose. This enables sufficient glucose to enter the cell, where it's used as a nutrient. Another example of receptor activity is the binding of a neurotransmitter released by the end of a stimulated neuron (or nerve cell) to a protein receptor on the next neuron. This binding causing a nerve impulse to be produced in the second neuron and is the method by which nerve impulses travel from one neuron to another.

Glycoproteins - proteins attached to carbohydrates - are found on the surface of cell membranes and have many functions, including acting as cell adhesion molecules to “stick” cells together.

Crash Course - Proteins and Transport Through the Cell Membrane

From left to right, a red blood cell, a platelet and a T cell. The photo is taken with a scanning electron microscope.
From left to right, a red blood cell, a platelet and a T cell. The photo is taken with a scanning electron microscope. | Source

Signaling Proteins

Cytokines are small proteins released by cells to communicate with other cells. They are often made by cells in the immune system when an infection is present. The cytokines stimulate the immune system to produce T cells, also called T lymphocytes, which fight the infection.

Some hormones are protein molecules. For example, erythropoietin is a protein hormone made by the kidneys to stimulate red blood cell production in the bone marrow. HCG (Human Chorionic Gonadotropin) is a protein hormone that is produced by the embryo and by the placenta during early pregnancy. Its function is to maintain the correct levels of estrogen and progesterone in a woman’s body to support the continued pregnancy. Pregnancy tests check for HCG in a woman’s urine or blood. If HCG is present the woman must be pregnant, since the hormone is made by the embryo or the placenta that are present only during pregnancy.

Cells from a cow that have been stained to show the cytoskeleton. Blue = nucleus, green = microtubules, red = actin filaments
Cells from a cow that have been stained to show the cytoskeleton. Blue = nucleus, green = microtubules, red = actin filaments | Source

Structural Proteins

A cell contains a network of protein filaments and tubules called the cytoskeleton. The cytoskeleton maintains the cell’s shape and allows its parts to move. Some cells have short hair-like extensions on their surface, called cilia. Other cells have one or more long extensions called flagella. Cilia and flagella are made of protein microtubules and are used to move the cell or to move fluids surrounding the cell.

Keratin is a structural protein found in our skin, hair and nails. Collagen protein fibers are located in many parts of the body, including the muscles, tendons, ligaments and bones. Collagen and another protein, called elastin, are often found together. Collagen fibers provide strength and elastin fibers provide flexibility. Collagen and elastin are found in the lungs, in the walls of blood vessels and in the skin.

Meat is rich in protein. Digestive enzymes are needed to convert the protein molecules to amino acid molecules.
Meat is rich in protein. Digestive enzymes are needed to convert the protein molecules to amino acid molecules. | Source

Enzymes

Enzymes are chemicals that catalyze (speed up) the chemical reactions in the body, Without enzymes, the reactions would happen too slowly or would not happen at all. Since a huge number of chemical reactions are happening all the time in our bodies, life would be impossible without enzymes.

Digestive enzymes break down the food that we eat, producing small particles that are absorbed through the lining of the small intestine. The particles enter the bloodstream, which transports them around the body to our cells. The cells use the digested food particles as nutrients.

Enzymes work by joining with the chemical or chemicals that are reacting (the substrate or substrates). A substrate molecule joins to a place on the enzyme molecule known as the active site. The two fit together like a key fits into a lock, so the description of enzyme action is commonly referred to as the lock and key theory. It's believed that in some reactions (or perhaps in most of them) the active site changes its shape slightly to fit the substrate, which is known as the induced fit model of enzyme activity.

The Induced Fit Model of Enzyme Activity

The substrates (reactants) join to the active site of an enzyme, enabling a chemical reaction to happen. The products that are made leave the enzyme.
The substrates (reactants) join to the active site of an enzyme, enabling a chemical reaction to happen. The products that are made leave the enzyme. | Source
Beans are a good source of protein for vegans and for everybody else.
Beans are a good source of protein for vegans and for everybody else. | Source

Types of Proteins and Amino Acids

The amino acid chains of a protein molecule are twisted, coiled and folded into a variety of complex shapes. These shapes must be maintained or proteins cannot function. Our bodies can make some of the amino acids needed to make our body proteins, but we must obtain the others from our diet. The amino acids which we can make are called “nonessential” amino acids, while those that we can’t make are “essential” amino acids. The distinction between a nonessential and an essential amino acid is not always clear, however, since adults can make certain amino acids while children can’t.

A protein in our diet that contains all the essential amino acids in adequate quantities is called a complete protein. Proteins from animal sources - meat, fish, eggs and dairy foods – are complete proteins. Plant proteins are generally incomplete, although there are some exceptions, such as soybean protein. Since different plants lack different essential amino acids, by eating a variety of plant foods a person can obtain all the amino acids that he or she needs. Protein is an important nutrient in our diet, since it enables our bodies to make the many kinds of protein that are essential for our body functions.

© 2010 Linda Crampton

Comments

    0 of 8192 characters used
    Post Comment

    • Nellieanna profile image

      Nellieanna Hay 6 years ago from TEXAS

      You've written about proteins in terms understandable to just about anyone. Well done. I've learned a few things about them I didn't know. Thank you for an informative article.

    • AliciaC profile image
      Author

      Linda Crampton 6 years ago from British Columbia, Canada

      Hi Nellieanna. Thank you for your comment. I’m glad that you found the article useful.

    • Dolores Monet profile image

      Dolores Monet 6 years ago from East Coast, United States

      Very informative! I understand the importance of proteins but you have really supplied some real information here!

    • AliciaC profile image
      Author

      Linda Crampton 6 years ago from British Columbia, Canada

      Thanks, Dolores. It's interesting to study proteins. They have so many different functions in our bodies.

    • ologsinquito profile image

      ologsinquito 2 years ago from USA

      This is very informative. Protein is very necessary. I know Americans probably eat way too much meat, but I don't think vegan is necessarily healthier.

    • AliciaC profile image
      Author

      Linda Crampton 2 years ago from British Columbia, Canada

      Hi, ologsinquito. I've heard nutritionists say that we eat too much meat. They often say that small quantities are good for us, though. Meat does contain some important nutrients. Thanks for the comment!

    • adevwriting profile image

      Arun Dev 18 months ago from United Countries of the World

      Good to know about the importance of protein in the human body. Deficiency of proteins such as dystrophin would lead to diseases such as Duchenne's muscular dystrophy. Voted up!

    • AliciaC profile image
      Author

      Linda Crampton 18 months ago from British Columbia, Canada

      Thank you for the comment and for sharing the information, adevwriting. I appreciate the vote, too.

    Click to Rate This Article