Updated date:

Fibronectin: A Cell Adhesion and Blood Clotting Protein

Linda Crampton is a writer and teacher with a first-class honors degree in biology. She often writes about the scientific basis of disease.

Fibroblasts from a mouse; as in humans, the cells make and secrete fibronectin.

Fibroblasts from a mouse; as in humans, the cells make and secrete fibronectin.

An Essential Protein in the Body

Fibronectin is an interesting and essential protein in our body. It has both adhesive and elastic properties, which makes it very useful. Fibres made of fibronectin attach cells to the medium that surrounds them. This medium is known as the extracellular matrix, or ECM. The fibres also control important aspects of cell behaviour and help to stop bleeding when we're injured. In addition, they attach the amniotic sac containing the fetus to the lining of the uterus.

Types of Fibronectin

Cellular fibronectin is secreted by specialized cells in the ECM called fibroblasts as well as by some other cell types. It attaches tissue cells to components of the extracellular matrix and also influences the behaviour of the cells.

Plasma fibronectin is made by liver cells, or hepatocytes. It enters the blood in a compact and inactive form. When we're wounded, it changes into a fibrillar form and become active. It then helps to form the blood clot that stops bleeding.

Fetal fibronectin is a special type of cellular fibronectin that is made by cells of a fetus, as its name suggests. The fetus is enclosed in the amniotic sac. Fibronectin fibres attach the amniotic sac to the lining of the uterus, keeping the developing baby safely in place.

Two amino acids join by a peptide bond. A chain of amino acids has many peptide bonds and is known as a polypeptide.

Two amino acids join by a peptide bond. A chain of amino acids has many peptide bonds and is known as a polypeptide.

Protein Structure

The word fibronectin comes from the Latin words "fibra", which means fibre, and "nectere", which means tie or bind. The name is appropriate, since a major function of the protein is to join structures together.

A protein is made of amino acids that are joined together to make a chain. The chain of amino acids is called a polypeptide. A fibronectin molecule contains two polypeptides. These lie beside each other and are attached by a pair of bonds at the end of each amino acid chain.

Fibronectin is a glycoprotein—one that has one or more carbohydrate chains attached to a polypeptide. Like other proteins, a fibronectin molecule is folded into a complex, three dimensional shape.

The illustration shows domains in a fibronectin polypeptide. The assembly domain is used when the inactive molecule changes its shape and is converted into an active form.

The illustration shows domains in a fibronectin polypeptide. The assembly domain is used when the inactive molecule changes its shape and is converted into an active form.

Domains of a Polypeptide

Researchers have discovered that a polypeptide in a fibronectin molecule contains "domains". A domain is a region of the polypeptide that can join to a specific molecule. Domains may join to a chemical in the extracellular matrix, a chemical in blood, or another fibronectin molecule (often symbolized as FN or Fn). Some domains join to specific types of cell membrane receptors. The domains enable fibronectin to be "sticky".

Like many other aspects of cell biology, the structure and behavior of fibronectin is complex and not completely understood. The exploration of the protein's actions could be very helpful in understanding some health disorders as well as normal activity in the body.

The Extracellular Matrix or ECM

An extracellular matrix, or ECM, is present outside and next to cells. This matrix is made of an organized arrangement of protein fibres embedded in a hydrated polysaccharide gel. The proteins include collagen, which provides strength, elastin, which provides elasticity, and fibronectin. A polysaccharide is a type of carbohydrate and is made of a chain of monosaccharide (simple sugar) molecules.

The ECM is often specialized is some way. For example, in bones the matrix is strengthened and solidified with calcium salts. The ECM in tendons and ligaments is loaded with collagen fibers, producing a ropy texture. Tendons connect muscles to bones while ligaments connect one bone to another at a joint.

It was once thought that the only functions of the extracellular matrix were to form a type of scaffold to support and protect the body's organs and to connect parts of the body together. Researchers now know that it also regulates the behaviour of cells and plays an active role in their lives.

The extracellular matrix is shown on either side of a capillary. Despite the basement membrane's name, it's considered to be part of the ECM.

The extracellular matrix is shown on either side of a capillary. Despite the basement membrane's name, it's considered to be part of the ECM.

Definitions Related to the Illustration

Starting at the top of the illustration above:

  • The epithelium covers the surface of the basement membrane. It consists of epithelial cells.
  • The basement membrane is a thin and fibrous layer that supports the epithelium and may be present next to the endothelium as well. It's coloured pink in the illustration.
  • The interstitial matrix lies between the epithelium and the endothelium in the first half of the illustration. It contains a polysaccharide gel and protein fibres. It may also contain cells.
  • The endothelium lines the blood vessel at the bottom of the second basement membrane.

The term "extracellular matrix" refers to the basement membrane plus the interstitial matrix.

Connective Tissue

The extracellular matrix is secreted by specialized cells. These cells are frequently present in the ECM but are often widely separated from each other instead of being close together as most cells are. The term "connective tissue" refers to extracellular matrix that contains cells.

Fibroblasts are the most common cells in the ECM and secrete the different kinds of proteins and polysaccharides found there. Bone is produced by osteoblasts and cartilage is made by chondrocytes, however.

Extracellular Matrix in Bone

Cellular Fibronectin

Cellular fibronectin is made by several types of cells, including fibroblasts, macrophages (a type of white blood cell), endothelial cells, and some epithelial cells. Endothelium is often considered to be a special type of epithelium.

Fibronectin molecules are released into the extracellular matrix in a folded and inactive form. They join to cell membrane proteins called integrins. Here the molecules unfold and are assembled into three dimensional networks, which are active.

Activated fibronectin plays an important role in cell adhesion. Its molecules form a network that binds to integrin molecules and attaches cells to components of the ECM, such as collagen fibres.

Cellular fibronectin has functions beyond simple adhesion. Integrins extend all the way through the cell membrane and interact with structures inside the cell. By binding to integrins, fibronectin can influence cell activities. It guides the movement of cells as they migrate during embryonic development. The protein also plays a role in cell growth, differentiation (specialization), and proliferation. Its fibres can stretch up to four times their resting length as they carry out their functions.

Structure of a cell membrane; integrins are a type of integral protein and are involved in the unfolding and action of cellular fibronectin

Structure of a cell membrane; integrins are a type of integral protein and are involved in the unfolding and action of cellular fibronectin

Plasma Fibronectin

Plasma is the liquid component of blood. Blood is a special kind of connective tissue in which the cells are suspended in a liquid medium instead of a polysaccharide gel. A compact, non-functional form of fibronectin is dissolved in plasma and circulates around the body in the bloodstream.

When someone is wounded, platelets rush to the injured area to help a blood clot form. As the clot develops, a soluble protein in blood plasma called fibrinogen is converted to solid fibrin threads. These threads form a mesh over the wound, stopping blood loss.

Plasma fibronectin located around the clot extends into a fibrous form and becomes active. The fibres of the substance promote platelet adhesion. Some of them enter the clot to provide additional stability.

Red blood cells are the most numerous type of cell in blood, which is a special kind of connective tissue.

Red blood cells are the most numerous type of cell in blood, which is a special kind of connective tissue.

Fetal fibronectin is often thought of as a type of glue that "sticks" the amniotic sac to the uterine lining. The following information is given for general interest only. A woman should consult her doctor if she has questions about fetal fibronectin or the test used to detect it.

Fetal Fibronectin

The amniotic sac is a fluid-filled container that has a wall made of a double layer of membrane. The fluid cushions and protects the baby. Fibronectin fibres attach the amniotic sac to the lining of the uterus. Some fibronectin may leak into the birth canal during the first 22 weeks of pregnancy as new attachments are being made in the uterus and the substance is being produced. Between about 24 and 35 weeks, however, no fibronectin should be detected in the birth canal. After this time. it appears again as attachments start to weaken in preparation for birth.

The Fetal Fibronectin Test

Women who are at risk for a preterm labour may receive a fetal fibronectin test (or tests) starting at round 23 or 24 weeks of pregnancy. A swab is used to obtain fluid from inside the birth canal near the cervix. The fluid is then tested for the presence of fibronectin. The results of the test may sometimes be ready in as little as an hour if necessary but are generally available within a few hours.

If no fibronectin is detected, there is said to be a 99% probability that the woman won't go into labour within the next two weeks. Unfortunately, the significance of a positive test is not so certain. It indicates an increased risk of labour in the next couple of weeks, but the premature labour may not happen. Doctors may test at-risk women every two weeks from around 24 weeks of pregnancy to about 35.

The advantage of knowing that a premature delivery is imminent is that medications such as corticosteroids can be given to the mother to improve the lung function of her immature fetus. Medication can also be given to reduce the chance of a preterm labour.

A Test for Premature Labour

An Important Molecule

Studying fibronectin is an important endeavour. The protein influences vital aspects of cell biology, which in turn influences our body's functions. It's also important in preventing blood loss and in wound healing.

Scientists are discovering an increasing number of functions of both fibronectin and the extracellular matrix. They are far more important than was once realized. Studying fibronectin's structure and discovering what the protein does should help researchers discover its role in both health and disease.

References

This content is accurate and true to the best of the author’s knowledge and does not substitute for diagnosis, prognosis, treatment, prescription, and/or dietary advice from a licensed health professional. Drugs, supplements, and natural remedies may have dangerous side effects. If pregnant or nursing, consult with a qualified provider on an individual basis. Seek immediate help if you are experiencing a medical emergency.

© 2013 Linda Crampton

Comments

Linda Crampton (author) from British Columbia, Canada on July 22, 2015:

Thank you, steven.

steven on July 22, 2015:

Nice post, AliciaC

Linda Crampton (author) from British Columbia, Canada on April 14, 2015:

Thank you very much, Joseph. I appreciate your visit. The human body is definitely fascinating!

Joseph O Polanco on April 14, 2015:

Fascinating piece! Makes one truly wonder how anyone could believe these extraordinary processes could be the denouement of blind chance instead of design. Great job! :)

Linda Crampton (author) from British Columbia, Canada on May 10, 2013:

Thank you, mylindaelliot. I agree - the human body is certainly amazing!

mylindaelliott from Louisiana on May 10, 2013:

Interesting information, the human body is so amazing.

Linda Crampton (author) from British Columbia, Canada on April 08, 2013:

Thank you very much for the comment and the vote, Prasetio!

prasetio30 from malang-indonesia on April 08, 2013:

Alicia, I should give my thumbs up for you. Thanks for always teaching as something new related with health. You still the best here. Voted up!

Prasetio

Linda Crampton (author) from British Columbia, Canada on April 07, 2013:

Thank you for the comment, wqaindia. I appreciate your visit! You should visit a doctor to find an answer to your question. I'm not a doctor, so I can't offer medical advice.

Ashok Goyal from 448 Dalima Vihar Rajpura 140401 Punjab India on April 07, 2013:

Hi AliciaC, the article is full of facts and knowledge. Can you tell me some cure for increasing the Platelets count and TLC count in the blood due to malfunctioning of Liver and Spleen so as to increase INR or PTI level.

Linda Crampton (author) from British Columbia, Canada on April 07, 2013:

Hi, Nell. Thank you very much for the comment, and thanks for the vote and the share, too!

Nell Rose from England on April 07, 2013:

Hi Alicia, well this was news to me too! lol! your hubs are always filled with so much info, most of with I have never heard of! this was fascinating, so voted up and shared! nell

Linda Crampton (author) from British Columbia, Canada on April 06, 2013:

Thank you for such a wonderful comment, Bill!! I appreciate your visit and comment very much.

Bill De Giulio from Massachusetts on April 06, 2013:

Alicia. You are such a wealth of knowledge when it comes to the human body. Thank you for continuing to educate us. I had never heard of fibronectin, never mind knowing what it is and what purpose it serves. It continues to amaze me with the great diversity of knowledge that people bring to HubPages and you are certainly right at the top of that list. Great job.

Linda Crampton (author) from British Columbia, Canada on April 06, 2013:

Thank you very much, Deb! There do seem to be a huge number of factors involved in maintaining our health. I guess the best we can do is to eat a healthy and varied diet that contains a wide variety of nutrients and follow a healthy lifestyle as well.

Deb Hirt from Stillwater, OK on April 06, 2013:

This really is vital information that we need to know to some degree in order to take care of ourselves. We were taught about the four food groups, but that really has so little to do with maintained well-being. Thanks for filling in so many pieces!

Linda Crampton (author) from British Columbia, Canada on April 06, 2013:

Thank you so much for the comment, drbj! I appreciate the vote, too.

drbj and sherry from south Florida on April 06, 2013:

When I read your fascinating hubs about facts most people may not know about our bodies, Alicia, I am always amazed at what a wondrous miracle the human body is. This is extremely well done. Voted Up.

Linda Crampton (author) from British Columbia, Canada on April 04, 2013:

Thank you very much for the visit and comment. Bill!

Bill Holland from Olympia, WA on April 04, 2013:

If it has to do with the body I learn it from you. If it has to do with nutrition I learn it from Rajan. Between the two of you, you are doing a great job of educating me. Good information, Alicia.