Force, Mass, Acceleration and How to Understand Newton's Laws of Motion

Updated on April 5, 2018
eugbug profile image

Eugene is a qualified control/instrumentation engineer Bsc (Eng) and has worked as a developer of electronics & software for SCADA systems.

Source

A Guide to Understanding Basic Mechanics

Mechanics is a branch of physics which deals with forces, mass, and motion.
In this easy to follow tutorial, you'll learn the absolute basics!

What's covered:

  • Definitions of force, mass, velocity, acceleration, weight
  • Vector diagrams
  • Newton's three laws of motion and how an object behaves when a force is applied
  • Action and reaction
  • Friction
  • Newton's equations of motion
  • Adding and resolving vectors
  • Moments, couples and torque
  • Angular velocity and power

Quantities Used in Mechanics

Mass

This is a property of a body and a measure of an objects resistance to motion. It is constant and has the same value no matter where an object is located on Earth, on another planet or in space. Mass in the SI system is measured in kilograms (kg). The international system of units, abbreviated to SI from the French "Système International d'Unités," is the units system used for engineering and scientific calculations. It is basically a standardization of the metric system.

Force

This can be thought of as a "push" or "pull." A force can be active or reactive.

Velocity

This is the speed of a body in a given direction and is measured in metres per second (m/s).

Acceleration

When a force is exerted on a mass, it accelerates. In other words, the velocity increases. This acceleration is greater for a greater force or for a smaller mass.

Load

When a force is exerted on a structure or other object, this is known as a load. Examples are the weight of a roof on the walls of a building, the force of wind on a roof, or the weight pulling down on the cable of a crane when hoisting.

Note: In US English, metres is spelled "meters"

What Are Examples of Forces?

  • When you lift something off the ground, your arm is exerting a force upwards on the object. This is an example of an active force
  • The Earth's gravity pulls down on an object and this force is called weight
  • A bulldozer can exert a huge force, pushing material along the ground
  • A huge force is produced by the engines of a rocket lifting it up into orbit
  • When you push against a wall, the wall pushes back. If you try to compress a spring, the spring tries to expand. When you stand on the ground, it supports you. All these are examples of reactive forces. They don't exist without an active force. See (Newton's laws below)
  • If the unlike poles of two magnets are brought together (N and S), the magnets will attract each other. However, if two like poles are moved close together (N and N or S and S), the magnets will repel

What is a Newton?

Force in the SI system of units is measured in newtons (N). A force of 1 newton is equivalent to a weight of about 3.5 ounces or 100 grams.

One Newton

One N is equivalent to about 100g or 3.5 ounces
One N is equivalent to about 100g or 3.5 ounces

What Are Vector Diagrams?

In mechanics, vector or free-form diagrams are used to describe and sketch the forces in a system. A force is usually represented by an arrow and its direction of action is indicated by the direction of the arrowhead. Rectangles or circles can be used to represent masses.

A force causes a mass to accelerate
A force causes a mass to accelerate | Source

A Very Large Force

A Pratt & Whitney turbofan engine as used on the F15 fighter jet. This engine develops a thrust of 130 kN (equivalent to a weight of 13 tonnes)
A Pratt & Whitney turbofan engine as used on the F15 fighter jet. This engine develops a thrust of 130 kN (equivalent to a weight of 13 tonnes) | Source

What Types of Forces Are There?

Effort

This can be thought of as the force applied to an object which may eventually cause it to move. For example when you push or pull a lever, slide a piece of furniture, turn a nut with a wrench or a bull dozer pushes a load of soil, the applied force is called an effort. When a vehicle is driven forwards by an engine, or carriages are pulled by a locomotive, the force which causes motion is known as the tractive effort. For rocket and jet engines, the term "thrust" is often used.

Weight

This is the force exerted by gravity on an object. It depends on the mass of the object and varies slightly depending on where it is located on the planet and the distance from the center of the Earth. An object's weight is less on the Moon and this is why the Apollo astronauts seemed to bounce around a lot and could jump higher. However it could be greater on other planets. Weight is due to the gravitational force of attraction between two bodies. It is proportional to the mass of the bodies and inversely proportional to the square of the distance apart. In engineering, this force acting on a structure is known as a load.

Tensile or Compressive Reaction

When you stretch a spring or pull on a rope, the material exerts an equal reactive force pulling back in the opposite direction. This is known as tension. If you try to compress an object such as a spring, sponge, gas or simply place an object on a table, the object pushes back. Working out the magnitude of these forces is important in engineering so that structures can be built with members which will withstand the forces involved, i.e they won't stretch and snap, or buckle under load.

Static Friction

Friction is a reactive force which opposes motion. Friction can have beneficial or detrimental consequences. When you try to push a piece of furniture along the floor, the force of friction pushes back and makes it difficult to slide the furniture. This is an example of a type of friction known as dry friction, static friction or stiction.
Friction can be beneficial. Without it everything would slide and we wouldn't be able to walk along a pavement without slipping. Tools or utensils with handles would slide out of our hands, nails would pull out of timber and brakes on vehicles would slip and not be of much use.

Viscous Friction or Drag

When a parachutist moves through the air or a vehicle moves on land, friction due to air resistance, slows them down. If you try to move your hand through water, the water exerts a resistance and the quicker you move your hand, the greater the resistance. These reactive forces are known as viscous friction or drag.

Weight is the Force on a Mass Due to Gravity

Source
Force = mass multiplied by acceleration
Force = mass multiplied by acceleration | Source

What Are Newton's Three Laws of Motion?

First Law

"An object will continue in its state of rest or motion in a straight line provided no external force acts on it"

Basically, this means that if for instance a ball is lying on the ground, it will stay there. If you kick it into the air, it will keep moving. If there was no gravity, it would go on for ever. However, the external force, in this case, is gravity which causes the ball to follow a curve, reach a max altitude and fall back to the ground.

Another example is if you put your foot down on the gas and your car accelerates and reaches top speed. When you take your foot off the gas, the car slows down, The reason for this is that friction at the wheels and friction from the air surrounding the vehicle (known as drag) causes it to slow down. If these forces were magically removed, the car would stay moving forever.

Second Law

"The acceleration of a body is directional proportional to the force which caused it and inversely proportional to the mass and takes place in the direction which the force acts"

This means that if you have an object and you push it, the acceleration is greater for a greater force. So a 400 horse power engine in a sports car is going to create loads of thrust and accelerate the car to top speed rapidly. Imagine if that engine was placed into a heavy train locomotive and could drive the wheels. Because the mass is now so large, the force creates much lower acceleration and the locomotive takes much longer to reach top speed.

If F is the force

m is the mass

and a is the acceleration

Then,

F = ma

Acceleration is measured in metres per second squared or m/s2

Example 1: A force of 10 newtons is applied to a mass of 2 kilos. What is the acceleration?

F = ma

So a = F/m = 10 / 2 = 5 m/s2

The velocity increases by 5 m/s every second

Weight as a Force

In this case, the acceleration is g, and is known as the acceleration due to gravity.
g is approximately 9.81 m/s2 in the SI system of units.

Again F = ma

So if the force F is renamed as W, and substituting for F and a gives:

Weight W = ma = mg

Example 2: What is the weight of a 10 kg mass?

W = mg = 10 x 9.81 = 98.1 newtons

Third Law

"For every action there is an equal and opposite reaction"

This means that when a force is exerted on an object, the object pushes back.

Some examples:

  • When you push on a spring, the spring exerts a force back on your hand. If you push against a wall, the wall pushes back.
  • When you stand on the ground, the ground supports you and pushes back up. If you try to stand on water, the water cannot exert enough force and you sink.
  • Foundations of buildings must be able to support the weight of the construction. Columns, arches, trusses and suspension cables of bridges must exert enough reactive compressive or tensile force to support the weight of the bridge and what it carries.
  • When you try to slide a heavy piece of furniture along the floor, friction opposes your effort and makes it difficult to slide the object

Test Yourself! - Quiz A

view quiz statistics

Examples of Active and Reactive Forces

Action and reaction
Action and reaction | Source

What is Dry Friction or "Stiction"?

As we saw above, friction is an example of a force. When you attempt to slide a piece of furniture along a floor, friction opposes your effort and makes things more difficult. Friction is an example of a reactive force, and doesn't exist until you push the object (which is the active force). Initially, the reaction balances the applied force i.e. your effort pushing the furniture, and there is no movement. Eventually, as you push harder, the friction force reaches a maximum, known as the limiting force of friction. Once this value is exceeded by the applied force, the furniture will start to slide and accelerate. The friction force is still pushing back and this is what makes it so difficult to continue to slide the object. This is why wheels, bearings, and lubrication come in useful as they reduce friction between surfaces, and replace it by friction at an axle and leverage to overcome this friction. Friction is still necessary to stop a wheel sliding, but it doesn't oppose motion. Friction is detrimental as it can cause overheating and wear in machines resulting in premature wear. So engine oil is important in vehicles and other machines, and moving parts need to be lubricated.

Forces acting on a mass when a force attempts to slide it along a surface. When the mass is just about to slide, the friction force Ff reaches a maximum value μRn
Forces acting on a mass when a force attempts to slide it along a surface. When the mass is just about to slide, the friction force Ff reaches a maximum value μRn | Source

Dry static friction, also known as stiction (see above diagram)

If F is the applied force on a body

The mass of the body is m

Weight of the body is W = mg

μs is the coefficient of friction (low μ means the surfaces are slippery)

and Rn is the normal reaction. (the reactive force at right angles to the surface due to the object being pushed against the surface)

Reaction Rn = Weight W

Then

limiting friction force is Ff = μsRn = μsW = μsmg

Remember this is the limiting force of friction just before sliding takes place. Before that, the friction force equals the applied force F trying to slide the surfaces along each other, and can be anything from 0 up to μRn.

So the limiting friction is proportional to the weight of an object. This is intuitive since it is harder to get a heavy object sliding on a specific surface than a light object. The coefficient of friction μ depends on the surface. "Slippery" materials such as wet ice and Teflon have a low μ. Rough concrete and rubber have a high μ. Notice also that the limiting friction force is independent of the area of contact between surfaces (not always true in practice)

Kinetic Friction

Once an object starts to move, the opposing friction force becomes less than the applied force. The friction coefficient in this case is μk.

Newton's equations of motion
Newton's equations of motion | Source

What Are Newton's Equations of Motion? (Kinematics Equations)

There are three basic equations which can be used to work out the distance traveled, time taken and final velocity of an accelerated object.

If u is the initial velocity

v is the final velocity

s is the distance covered

t is the time taken

and a is the acceleration

For uniform acceleration

v = u + at

s = ut + 1/2 at2

v2 = u2 + 2as

Examples:

(1) A force of 100 newtons accelerates a mass of 5 kg for 10 seconds. If the mass is initially at rest, calculate the final velocity.

Firstly it is necessary to calculate the acceleration.

F = 100 newtons

m = 5 kg

t =10 seconds

u = initial velocity = 0 since the object is at rest

F = ma so a = F/m = 100/5 = 20 m/s2

v = u + at = 0 + 20 x 10 = 200 m/s

(2) A mass of 10 kg is dropped from the top of a building which is 100 metres tall. How long does it take to reach the ground?

In this example, it doesn't make any difference what the value for the mass is, the acceleration due to gravity is g irrespective of the mass. Galileo demonstrated this when he dropped two balls of equal sizes but differing masses from the leaning tower of Pisa.

We know s = 100

g = 9.81

u = 0

We can use the equation s = ut + 1/2 at2

u = 0 and a = g so s = 1/2gt2

or t = √(2s/g) = √(2 x 100) / 9.81 = 4.5 seconds approx

Commander David Scott's Hammmer and Feather Experiment from Apollo 15

How to Add and Resolve Force Vectors

As mentioned briefly above, a force can be represented graphically by an arrow with a given direction known as a vector. If two or more forces are involved, problems in mechanics can be solved graphically by drawing the vectors, the head of one vector ending at the tail of the 2nd vector and so on. The vectors are drawn to scale, the length representing the magnitude of the force and the angle being the angle of action of the force. The "Triangle of Forces" or "Parallelogram of Forces" is then a method for visualizing or finding the resultant of forces.

Forces can also be resolved. In the diagram below, a mass rests on a slope. Using the parallelogram of forces in reverse, the weight force can be resolved into a force parallel to the slope and perpendicular to the slope. This is useful for these type of problems because it enables the normal reaction to be worked out (the force exerted by the slope on the mass as explained earlier) and also the friction forces involved.

How to Use the Triangle of Forces to Add Vectors

Triangle of forces. F3 is the sum of the two forces F1 and F2
Triangle of forces. F3 is the sum of the two forces F1 and F2 | Source

How to Use the Parallelogram of Forces to Add or Resolve Vectors

Parallelogram of forces. F3 is the sum of the forces F1 and F2
Parallelogram of forces. F3 is the sum of the forces F1 and F2 | Source

Using the Parallelogram of Forces to Resolve Weight Into Normal and Tangential Forces

Resolving forces for a mass on a slope
Resolving forces for a mass on a slope | Source

Engineering Mathematics by K.A. Stroud

This is an excellent math textbook for both engineering students and anyone with an interest in the subject. The material has been written for part 1 of BSc. Engineering Degrees and Higher National Diploma courses.

A wide range of topics are covered including matrices, vectors, complex numbers, calculus, calculus applications, differential equations, series, probability theory, and statistics. The text is written in the style of a personal tutor, guiding the reader through the content, posing questions, and encouraging them to provide the answer.

This book basically makes learning mathematics fun!

Couples and Torque

What Are Moments, Couples and Torque?

When a force acts on an object, it produces what is known as a turning moment or just simply a moment. An example is when you push on the trunk of a small tree.This produces a turning moment about the base of the tree which is balanced by the tension in the trunk and the restraining force of the roots. If you push too hard, you exceed a breaking limit and the trunk snaps or the tree gets uprooted. The moment of a force about a point is the magnitude of the force multiplied by the perpendicular distance between the force and the point. When 2 forces act in opposite directions, this is known as a couple and the magnitude of the twisting force or couple is called torque. If the forces are both of magnitude F, and the perpendicular distance between them is d, then:

Torque T = Fd

As you can see, if the force is increased or the distance is increased, the torque becomes greater. So this is why it is easier to turn something if it has a larger diameter handle or knob. A tool such as a socket wrench with a longer handle has more torque.

A gearbox is a device which converts high-speed low torque to lower speed and higher torque (or vice versa). Gearboxes are used in vehicles to provide the initial high torque required to get a vehicle moving and accelerate it. Without a gearbox, a much higher powered engine with a resulting higher torque would be needed. Once the vehicle has reached cruising speed, lower torque is required (just sufficient to create the force required to overcome the force of drag and rolling friction at the road surface).

Gearboxes are used in a variety of other applications including power drills, cement mixers (low speed and high torque to turn the drum), food processors and windmills (converting low blade speed to high rotational speed in the generator)

A common misconception is that torque is equivalent to power and more torque equals more power. Remember however torque is a turning force and a gearbox which produces higher torque also reduces speed proportionately. So the power output from a gearbox is equal to the power in (actually a little less because of friction losses, mechanical energy being wasted as heat)

Moment of a force
Moment of a force | Source
Two forces constitute a couple. The magnitude is the torque
Two forces constitute a couple. The magnitude is the torque | Source
This gate valve has a large diameter turning handle to increase torque and make turning of the valve stem easier
This gate valve has a large diameter turning handle to increase torque and make turning of the valve stem easier | Source

Angles and Radians

Angles are measured in degrees, but sometimes to make the mathematics simpler and elegant it's better to use radians which is another way of denoting an angle. A radian is the angle subtended by an arc of length equal to the radius of the circle. Basically "subtended" is a fancy way of saying that if you draw a line from both ends of the arc to the centre of the circle, this produces an angle with magnitude of 1 radian.

An arc length r corresponds to an angle of 1 radian

So if the circumference of a circle is 2πr = 2π (r) the angle for a full circle is 2π

And 360 degrees = 2π radians

1 radian is the angle subtended by an arc of length equal to the radius r
1 radian is the angle subtended by an arc of length equal to the radius r | Source

Angular Velocity

Angular velocity is the speed of rotation of an object. Angular velocity in the "real world" is normally quoted in revolutions per minute (RPM), but it's easier to work with radians and angular velocity in radians per second so that the mathematical equations turn out simpler and more elegant. Angular velocity velocity denoted by the Greek letter ω is the angle in radians that an object rotates through per second.

Angular velocity denoted by the Greek letter omega, is the angle in radians turned through per second
Angular velocity denoted by the Greek letter omega, is the angle in radians turned through per second | Source

What is the Relationship Between Angular Velocity, Torque and Power?

If the angular velocity is ω

and torque is T

Then

Power = ωT

e.g.

A shaft from an engine drives a generator at 1000 RPM
The torque produced by the shaft is 1000 Nm

How much mechanical power does the shaft produce at the input to the generator?

1 RPM corresponds to a speed of 1/ 60 RPS (revs per second)
Each revolution corresponds to an angle of 2π radians
So 1 RPM = 2π/60 radians per second
And 1000 RPM = 1000 (2π/60) radians per second

So ω = 1000 (2π/60) = 200π/6 radians per second

Torque T = 1000 Nm

So power = ωT = 200π/6 x 1000 = 104.72 kW



Questions & Answers

  • What is the magnitude of the friction between the wheels and the ground?

    Friction is necessary between wheels and the ground in order to prevent the wheels slipping. Static friction doesn't oppose motion, but rolling friction can do so.

    In the case of a wheel driving a vehicle, if the driving torque of the wheel turning clockwise is T and the wheel's radius is r, this results in a couple. So there's a force at the point of contact of the wheel and ground of F = T/r acting backwards and F = T/r acting forwards on the axle. If there's no slippage, a balancing force F = T/R acts forwards at the point of contact on the ground. So these forces are in balance. The other unbalanced force at the axle pushes the vehicle forwards.

  • Assuming that the Earth's moon is at an instance 382,000,000m away from the centre of the earth, what are its linear speed and the period of orbit at motion around the earth?

    The equation for orbital velocity is v = Square Root (GM / r)

    Where v is the linear velocity

    G is the gravitational constant

    M is the mass of the Earth

    and r is the distance from the Earth to the satellite (the Moon in this case) = 382 x 10^6 metres

    So look up values for G & M, plug them into the equation you'll get an answer.

    Also v = rw = but w = 2PI/T

    where w is the angular velocity

    and T is the period of orbit,

    So substituting gives

    v = r(2PI/T)

    And rearranging

    T = r2PI/T or T = 2PIr/v

    substitute the values r = 382 x 10^6 and v calculated previously to get T

  • What is the difference between torque and moments because both of them are calculated the same way?

    A moment is the product of a single force about a point. E.g. when you push down on the end of a wheel brace on a nut on a car wheel.

    A couple is two forces acting together, and the magnitude is the torque.

    In the wheel brace example, the force produces both a couple (whose magnitude is the torque) and a force at the nut (which pushes the nut).

    In a sense, they are the same, but there are subtle differences.

    Have a look at this discussion:

    https://www.quora.com/What-is-the-difference-betwe...

  • Calculate when a dock worker applies a constant horizontal force of 80.0 Newton to a block of ice on a smooth horizontal floor. If the frictional force is negligible, the block starts from rest and moves 11.0 meters in 5 seconds (a) What is the mass of the block of ice?(b) If the worker stops pushing at the end of 5 seconds, how far does the block move in the next 5 seconds?

    (a)

    Newton's 2nd Law

    F = ma

    Since there's no opposing force on the block of ice, the net force on the block is F = 80N

    So 80 = ma or m = 80/a

    To find m, we need to find a

    Using Newton's equations of motion:

    Initial velocity u = 0

    Distance s = 11m

    Time t = 5 seconds

    Use s = ut + 1/2 at² because it's the only equation which gives us the acceleration a, while knowing all the other variables.

    Substituting gives:

    11 = (0)(5) + 1/2a(5²)

    Rearranging:

    11 = (1/2)a(25)

    So:

    a = 22/25 m/s²

    Substituting in the equation m = 80/a gives:

    m = 80 / (22/25) or m = 90.9 kg approx

    (b)

    Since there's no further acceleration (the worker stops pushing), and there's no deceleration (friction is negligible), the block will move at constant velocity (Newton's first law of motion).

    So:

    Use s = ut + 1/2 at² again

    Since a = 0

    s = ut + 1/2 (0)t²

    or

    s = ut

    But we don't know the initial velocity u that the block travels at after the worker stops pushing. So first we have to go back and find it using the first equation of motion. We need to find v the final velocity after pushing and this will become the initial velocity u after pushing stops:

    v = u + at

    Substituting gives:

    v = 0 + at = 0 + (22/25)5 = 110/25 = 22/5 m/s

    So after the worker stops pushing

    V = 22/5 m/s so u = 22/5 m/s

    t = 5 s

    a = 0 m/s²

    Now substitute into s = ut + 1/2 at²

    s = (22/5)(5) + (1/2)(0)(5² )

    Or s = 22 m

© 2012 Eugene Brennan

Comments

    0 of 8192 characters used
    Post Comment

    • profile image

      deepak 

      4 weeks ago

      if action and reaction is on same object then how to calculate required force. a 500 kg weight is lifted by wire rope pully and driving motor and gear box is mounted on same lifting material. if you want i can draw a diagram also. please give me your e mail id.

    • eugbug profile imageAUTHOR

      Eugene Brennan 

      2 months ago from Ireland

      Here's some more definitions on displacement and tonnage:

      http://www.themaritimesite.com/a-guide-to-understa...

    • eugbug profile imageAUTHOR

      Eugene Brennan 

      2 months ago from Ireland

      Hi Marina,

      Newton's Second Law is:

      Force = mass x acceleration

      F = ma

      where F is the force, m is the mass and a is the acceleration

      Weight is a force and acceleration is the acceleration due to gravity g

      So if W is weight, then:

      F = ma

      becomes

      W = mg

      So to convert mass to weight, you multiply by the acceleration due to gravity g which is about 9.81 m/s/s and the result is measured in Newtons.

      In your example, 20000 tonnes is mass, but mass is often referred to (incorrectly) as weight in everyday life.

      I can't find any consistency for a definition of displacement. Some sources quote displacement as the volume of water displaced in cubic metres. Other sources quote it as weight in metric tonnes or imperial tons (long tons).To complicate things, there is also force displacement (tonnes x 9.81 giving Newtons) and mass displacement. In general however according to the Archimedes' the displacement weight of water equals the weight of the ship.

      http://www.gard.no/web/updates/content/20733031/to...

      Loaded cargo is 120 tonnes, again this is strictly mass, not weight.

      In the SI system

      Moment = force x distance = weight x distance

      So yes, weight is a force

      But for ships and cranes the tonne metre is often used

      So tonne metres = mass in tonnes x distance in metres.

    • profile image

      Marina 

      2 months ago

      Please HELP. Ship in water has mass of 20000 tonnes or weight? Is displacement weight or mass? Deadweight should be deadmass? Loaded cargo has mass or weight of 120 tonnes? Loaded cargo 2 meters from center line create momentum Moment = force × distance, is force mass or weight? Moment = 120×2 =240 tm, is this correct, and how can it be?

    • profile image

      I m Ritika 

      3 months ago

      I m very thankful

    • eugbug profile imageAUTHOR

      Eugene Brennan 

      3 months ago from Ireland

      Hi Cheyenne, look in my profile, there's several more!

    • CheyenneLeoBC profile image

      Cheyenne Leo 

      3 months ago from British Columbia, Canada

      This is fantastic. Do you have any more of these sorts of articles, educational in nature?

    • eugbug profile imageAUTHOR

      Eugene Brennan 

      8 months ago from Ireland

      Hi Diego,

      No, I define the reactive force as being a reaction to the active force. So for instance a spring "pushes" back when it is compressed. The reaction produced by the object in question doesn't act on itself, it acts on whatever produced the force. Which part of the text or graphics do you think is misleading?

    • eugbug profile imageAUTHOR

      Eugene Brennan 

      14 months ago from Ireland

      A Newton's cradle is a device which demonstrates how impact energy can be transferred using a series of swinging spheres. The first swinging sphere collides with the second sphere and because the collision is elastic, it slows down and transfers most of its kinetic energy to the second sphere which then gains momentum and hence velocity. This sphere collides with the third sphere and the process is repeated, energy being transferred through the series of balls.

    • profile image

      Jovito B. Catungal 

      14 months ago

      This is good review material.

      I have a queryy.. Is there a gadget to convert the impact energy or a force into a velocity?

    • profile image

      Akinmolujoye Abiodun 

      14 months ago

      I'm very grateful thanks guy

    • eugbug profile imageAUTHOR

      Eugene Brennan 

      3 years ago from Ireland

      Thanks Jackie, glad you liked it!

    • littlething profile image

      Jackie S 

      3 years ago

      Awesome Hub about Physics! Thanks for all the great info!

    working

    This website uses cookies

    As a user in the EEA, your approval is needed on a few things. To provide a better website experience, owlcation.com uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

    For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at: https://owlcation.com/privacy-policy#gdpr

    Show Details
    Necessary
    HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
    LoginThis is necessary to sign in to the HubPages Service.
    Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
    AkismetThis is used to detect comment spam. (Privacy Policy)
    HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
    HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
    Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
    CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
    Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the googleapis.com or gstatic.com domains, for performance and efficiency reasons. (Privacy Policy)
    Features
    Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
    Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
    Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
    Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
    Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
    VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
    PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
    Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
    MavenThis supports the Maven widget and search functionality. (Privacy Policy)
    Marketing
    Google AdSenseThis is an ad network. (Privacy Policy)
    Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
    Index ExchangeThis is an ad network. (Privacy Policy)
    SovrnThis is an ad network. (Privacy Policy)
    Facebook AdsThis is an ad network. (Privacy Policy)
    Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
    AppNexusThis is an ad network. (Privacy Policy)
    OpenxThis is an ad network. (Privacy Policy)
    Rubicon ProjectThis is an ad network. (Privacy Policy)
    TripleLiftThis is an ad network. (Privacy Policy)
    Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
    Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
    Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
    Statistics
    Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
    ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
    Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)