Math Help: How to Do Long Division of Polynomials Easily (Synthetic Division)

Updated on May 15, 2018

Stuck on long division of polynomials? The traditional long division method not doing it for you? Here's an alternative method which is possibly even easier and totally accurate—synthetic division.

This method can help you not only to solve long division equations, but to help you in turn to factorize polynomials and even solve them. Here is a simple, step-by-step guide to synthetic division.

1. What Is a Long Division Equation?

Firstly, you should probably be able to recognize what is meant by a long division equation. Here are some examples:

Examples of division of polynomials
Examples of division of polynomials

2. The Important Parts of Your Equation

Next, you need to be able to recognize within your equation a few key parts.

First, there is the polynomial you want to divide. Then, there are the co-efficients of the powers of x in the polynomial (x4, x3, x2, x, etc).* Finally, you should see what one solution of your equation is (e.g. if you are dividing by [x + 5], the solution is -5. As a general rule, if you are dividing the polynomial by [x-a], the solution is a).

*Note that any constant terms count as co-efficients - as they are co-efficients of x0. Also, keep in mind any powers of x that are missing and note that they have co-efficients of 0 - e.g. in the polynomial x2 - 2, the co-efficient of x is 0.

Key parts of the equation to recognize
Key parts of the equation to recognize

3. Setting Up Synthetic Division

Now, time to actually do the long division, using the synthetic division method. Here is an example of what your working should look like, including placement of co-efficients, the given solution, and your own solution, including the remainder.

(Note: we are continuing to use the example in the previous step.)

What synthetic division looks like, and where to place certain parts of the equation and your working around the fancy line.
What synthetic division looks like, and where to place certain parts of the equation and your working around the fancy line.

4. Adding the Numbers in Each Column

The next few steps are ones you repeat per "column" - as labelled in the diagram below.

The first of these repeated steps is to add the numbers in the column you are dealing with (you start with the first column on the left, then work right), and write the answer in the column below the line. For the first column, you simply write the first co-efficient below the line, as there is no number below it that needs to be added.

In later columns, when a number is written below the co-efficient (which is explained in step 5 below), you add up the two numbers in the column, and write the sum below the line, as you did for the first column.

Add the numbers in the column as you go, putting answers below the line in that column.
Add the numbers in the column as you go, putting answers below the line in that column.

5. Multiplying Numbers Below the Line by the Given Solution, then Placing the Answer in the Next Column

Here is the second step, step 5, to repeat for each column, after step 4 has been completed for the previous column.

Once the first column is completed, you then multiply the number below the line in this column by the given solution on the left (labelled in step 3 above). As the title of this step suggests, you then write the solution to this calculation in the next column, underneath the co-efficient.

Remember: as step 4 above explains, you then add the two numbers in the column, and write the answer below the line. This gives you another number below the line to repeat this step 5. You repeat steps 4 and 5 until all columns have been filled out.

Second step to repeat for the other columns
Second step to repeat for the other columns

6. Recognizing the Final Solution and the Remainder

As labelled in the diagram below, all the numbers you have worked out and written under the line are the co-efficients of your final solution. The final number (in the last column), which you have separated from the rest with a curved line, is the remainder of the equation.

Parts of the final solution
Parts of the final solution

7. Writing Out Your Final Solution!

You know what the co-efficients of your final solution are. Just note that the final solution is of one degree less than the polynomial you just divided - i.e. if the highest power of x in the original polynomial is 5 (x5), the highest power of x in your final solution will be one less than that: 4 (x4).

Therefore, if the co-efficients of your final solution are 3, 0, and -1 (ignore the remainder), your final solution (ignoring the remainder for now) is 3x2 + 0x - 1 (i.e. 3x2 - 1).

Now, for the remainder. If the number in the final column is simply 0, there is, naturally, no remainder to the solution and you can leave your answer as is. However, if you have a remainder of, say, 3, you add on to your answer: + 3/(original polynomial). e.g. If the original polynomial you have divided is x4 + x2 - 5, and the remainder is -12, you add -12/(x4 + x2 - 5) to the end of your answer.

Final solution to the division equation (co-efficient of x is 0, remainder is 0)
Final solution to the division equation (co-efficient of x is 0, remainder is 0)

And there you have it, synthetic division! 7 steps seems like a lot, but they are all relatively short and there simply to make things absolutely, crystal clear. Once you get the hang of doing this process on your own (which should be after just a few goes), it is very quick and easy to use as working in exams and tests.

Some other uses of this method, as previously mentioned, include part of factoring a polynomial. For example, if one factor has already been found (perhaps by the factor theorem), then doing synthetic division of the polynomial, divided by this factor, can simplify the it down to the one factor multiplied by a simpler polynomial - which in turn may be easier to factorize.

Here's what this means: e.g. In the example used in the steps above, a factor of the polynomial x3 + 2x2 - x - 2 is (x + 2). When the polynomial is divided by this factor, we get x2 - 1. By the difference of two squares, we can see that x2 - 1 = (x + 1)(x - 1). Thus, the entire polynomial factorized reads: x3 + 2x2 - x - 2 = (x + 2)(x + 1)(x - 1).

To take this all a step further, this can help you to solve the polynomial. Thus, in the example used, the solution is x = -2, x = -1, x = 1.

Hopefully this has helped a little and you are now more confident in solving division problems involving polynomials.


    0 of 8192 characters used
    Post Comment
    • profile image


      2 years ago

      great detailed explanation .only step 4 was a bit incomprehensible

      thank you soo much

    • DonnaCosmato profile image

      Donna Cosmato 

      8 years ago from USA

      Congratulations on being selected as a Hubnuggets nominee! I wish you had been my math teacher; I'm sure I would have understood the subject matter better and received a higher grade. Voted up.

    • ripplemaker profile image

      Michelle Simtoco 

      8 years ago from Cebu, Philippines

      Gosh you are bringing me back to my high school and college when we needed to study this. This is truly helpful for students and this is a good idea for a hub! Keep up the great work.

      Congratulations on your Hubnuggets nomination. Polynomials are in see for yourself be sure to read and vote and join the Hubnuggets fun! Have an amazing year ahead of you! Love and light.

    • chicagoguy profile image

      Raj Lally Batala 

      8 years ago from Chicago ,USA

      good article !!

    • samanthamayer profile imageAUTHOR


      8 years ago from New Zealand

      Thank you for your comments! I must post more tutorial hubs, as I enjoy it and hope that they do manage to help some people.

    • Felixedet2000 profile image


      8 years ago from The Universe

      You are a teacher for real: keep it up, love your hub.

    • profile image


      8 years ago

      This is a great math hub with some serious work put in. Would really be helpful for someone looking for homework or study help. Good job and voted up!


    This website uses cookies

    As a user in the EEA, your approval is needed on a few things. To provide a better website experience, uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

    For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at:

    Show Details
    HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
    LoginThis is necessary to sign in to the HubPages Service.
    Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
    AkismetThis is used to detect comment spam. (Privacy Policy)
    HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
    HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
    Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
    CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
    Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the or domains, for performance and efficiency reasons. (Privacy Policy)
    Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
    Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
    Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
    Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
    Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
    VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
    PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
    Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
    MavenThis supports the Maven widget and search functionality. (Privacy Policy)
    Google AdSenseThis is an ad network. (Privacy Policy)
    Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
    Index ExchangeThis is an ad network. (Privacy Policy)
    SovrnThis is an ad network. (Privacy Policy)
    Facebook AdsThis is an ad network. (Privacy Policy)
    Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
    AppNexusThis is an ad network. (Privacy Policy)
    OpenxThis is an ad network. (Privacy Policy)
    Rubicon ProjectThis is an ad network. (Privacy Policy)
    TripleLiftThis is an ad network. (Privacy Policy)
    Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
    Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
    Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
    Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
    ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
    Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)
    ClickscoThis is a data management platform studying reader behavior (Privacy Policy)