Skip to main content

Sickle Cell Disease or Anemia and CRISPR-Cas9 Genome Editing

Linda Crampton is an experienced teacher with a first-class honors degree in biology. She writes about the scientific basis of disease.

Genome Editing for Treating Disease

Sickle cell anemia is a type of sickle cell disease, or SCD. It's a very unpleasant and often painful condition in which red blood cells are misshapen, stiff, and sticky. The abnormal cells may block blood vessels. The blockages can lead to tissue and organ damage and may result in a shortened lifespan.

The disorder is caused by a gene mutation in a specific type of stem cell. Stem cells produce the cells that we use and pass genes to them. A process known as CRISPR-Cas9 has been used to correct the harmful mutation in lab equipment. In clinical trials, the edited cells have been placed in the bodies of people with sickle cell anemia. So far, the technique has been very helpful for patients.

Many people working in molecular biology and biomedicine are excited by the CRISPR-Cas9 process. It offers the potential for huge benefits in our lives. There are some concerns about the process, however. Our genome is the complete set of genetic instructions in our body. The genes in the genome give us our fundamental characteristics. While it's hard to imagine that anyone would object to replacing damaged genes in order to help people with a life threatening, painful, or debilitating disease, there are worries that the new technology might be used for less benign purposes.

An Important Note

The disease information in this article is given for general interest. Sickle cell disease requires a doctor's diagnosis and treatment recommendations. Treatments vary and depend on a person's symptoms, age, and other health problems as well as the type of SCD.

What Is Sickle Cell Disease or SCD?

SCD exists in several forms. Sickle cell anemia is the most common form of the disease. For this reason, the term "sickle cell disease" is often synonymous with sickle cell anemia. This article refers specifically to the sickle cell anemia version of SCD, though some of the information may apply to the other forms as well.

Patients with SCD make an abnormal form of hemoglobin due to a gene mutation. Hemoglobin is a protein in red blood cells that transports oxygen from the lungs to the body's tissues.

Normal red blood cells are round and flexible. In someone with the sickle cell anemia form of SCD, the red blood cells are sickle-shaped, stiff, and inflexible due to the presence of the abnormal hemoglobin inside them. Normal cells can squeeze through narrow passages in the circulatory system. Sickled cells may get stuck. They sometimes collect and stick together, forming a bottleneck. The clump of cells reduces or prevents oxygen from getting to the tissue beyond the bottleneck and may cause damage to the tissue.

Types of SCD

Sickle cell disease is caused by a mutation in a gene that codes for part of the hemoglobin molecule. Each of our chromosomes has a partner chromosome that contains genes for the same characteristics, so we have two copies of the hemoglobin gene in question. (A hemoglobin molecule consists of multiple chains of amino acids and is controlled by multiple genes, but the discussion below refers to specific genes in the set.) The effects of the mutated gene depend on the way in which it's altered and whether an alteration occurs in both copies of the gene or in only one.

Normal hemoglobin is also known as hemoglobin A. In certain situations, an abnormal form of the protein known as hemoglobin S causes red blood cells to become sickled. Some examples of sickle cell disease and their relationship to hemoglobin S are listed below. Other types of SCD exist in addition to the ones that are listed, but they are rarer.

  • If one hemoglobin gene codes for hemoglobin S and the other gene codes for hemoglobin A, the individual won't have sickle cell disease. The normal gene is dominant and the mutated one is recessive. The dominant one "overrules" the recessive one. The person is said to be a carrier for sickle cell trait and may pass it to their children, however.
  • If both genes code for hemoglobin S, the person has sickle cell anemia. The condition is symbolized by hemoglobin SS or HbSS.
  • If one gene codes for hemoglobin S and the other codes for an abnormal form of hemoglobin called hemoglobin C, the condition is symbolized as hemoglobin SC or HbSC.
  • If one gene codes for hemoglobin S and the other codes for a disease called beta thalassemia, the condition is symbolized as HbS beta thalassemia or HbSβ thalassemia. Beta thalassemia is a condition in which the beta globin chain in hemoglobin is abnormal.

People with any of the last three conditions in the list above have a problem in carrying a sufficient amount of oxygen in their blood due to the alterations in their hemoglobin molecules.

Possible Symptoms of SCD (Sickle Cell Anemia Form)

Symptoms of SCD vary considerably. They depend on a person's age and the type of sickle cell disease that they have. Some symptoms are more common than others. A patient often experiences pain when sickled red blood cells block a vessel and prevent oxygen from reaching tissues. The painful episode is known as a crisis. The frequency and severity of crises is different in different people.

Patients with SCD frequently suffer from anemia. This is a condition in which the body contains an insufficient number of red blood cells and is therefore unable to transport enough oxygen to the tissues. Sickled red blood cells live for a much shorter time than normal ones. The body may not be able to keep up with the demand for new cells. The main symptom of anemia is fatigue.

Other possible symptoms or complications of SCD include the following:

  • jaundice due to the presence of yellow bilirubin released by excessive red blood cell breakdown
  • an increased risk of infection due to spleen damage (The spleen plays multiple roles in keeping the blood in good condition, including fighting microorganisms in the liquid.)
  • an increased risk of stroke due to the blockage of blood travelling to the brain
  • acute chest syndrome (sudden breathing problems due to the presence of sickled cells in the blood vessels of the lungs)

Disease Management

Medications and other treatments are available to treat sickle cell disease. A person may need to seek medical aid during a crisis. As the doctor in the video above says, SCD must be managed carefully because there are several symptoms associated with the disorder that are potentially life threatening. As long as this management takes place, however, the outlook for patients today is much better than it was in the past.

According to the NIH (National Institutes of Health), in the United States the predicted lifespan for SCD patients is currently forty to sixty years. In 1973 it was only fourteen years, which shows how much treatment has improved. Nevertheless, we need to find ways to increase lifespan to a normal length and to reduce or preferably eliminate crises. It would be wonderful to eliminate the disease altogether. Correcting the mutation that causes the disorder might enable us to do this.

Functions of a hematopoietic stem cell in the bone marrow

Functions of a hematopoietic stem cell in the bone marrow

Mutations in Hematopoietic Stem Cells

Our blood cells are made in the red bone marrow, which is located inside some of our bones. The starting point for blood cell production is the hematopoietic stem cell, as shown in the illustration above. Stem cells are unspecialized, but they have the wonderful ability to produce the specialized cells that our body needs and well as new stem cells. The mutation that produces SCD is present in the hematopoietic stem cells and passed to the red blood cells, or erythrocytes. If we could give SCD patients normal stem cells, we could cure the disease.

At the moment, the only cure for sickle cell disease is a bone marrow or hematopoietic stem cell transplant using cells from someone that lacks the mutation. Unfortunately, this isn't a suitable treatment for everyone due to their age or the incompatibility of donor cells with the recipient's body. CRISPR may be able to correct the mutation in the patient's own stem cells, eliminating the problem of incompatibility.

Bone marrow contains hematopoietic cells.

Bone marrow contains hematopoietic cells.

Deoxyribonucleic Acid (DNA)

The new technology involves the editing of genes. This results in changes in body features via the proteins that are produced from the instructions in the genes. In order to get a basic understanding of the gene editing process, some knowledge of DNA and cell biology should be useful.

DNA and Chromosomes

DNA stands for deoxyribonucleic acid. There are forty-six DNA molecules in the nucleus of each of our body cells (but only twenty-three in our eggs and sperm). Each molecule is associated with a small amount of protein. The union of a DNA molecule and protein is known as a chromosome.

Genome and Genes

Our genome is the complete set of all the DNA in our cells. Most of our DNA is in the nucleus of our cells, but some is located in the mitochondria. Genes are sections of DNA molecules and contain the code for making proteins. Part of each DNA molecule is non-coding.

The nucleus in our cells (except for the nucleus in our eggs or sperm) contains the same DNA and therefore the same genes. Different genes are active in different parts of the body, however.

The Nature of the Genetic Code

A DNA molecule consists of two strands consisting of smaller molecules. The strands are bonded together to form a ladder-like structure. The ladder is twisted to form a double helix. A flattened section of the "ladder" is shown in the illustration below.

The most significant molecules in a strand of DNA as far as the genetic code is concerned are known as nitrogenous bases. There are four of these bases—adenine, thymine, cytosine, and guanine. Each base appears multiple times in the strand. The sequence of bases on one strand of the DNA forms a code that provides instructions for making proteins. The code resembles a sequence of letters from the alphabet arranged in a specific order to form words and a meaningful sentence. The length of DNA that codes for a particular protein is called a gene.

The proteins that are made by cells are used in many ways. Enzymes are one type of protein and are vitally important in our body. They control the myriad of chemical reactions that keep us alive.

The "building blocks" of a DNA molecule are known as nucleotides. A nucleotide consists of a phosphate-deoxyribose group and a nitrogenous base. The four nitrogenous bases are adenine, thymine, cytosine, and guanine. Two strands exist in a DNA molecule. Bonds between adenine and thymine and between cytosine and guanine join the two strands.

Messenger and Transfer RNA

Messenger RNA and Transcription

Although the code for making proteins is located in the nuclear DNA, the proteins are made outside the nucleus. DNA is unable to leave the nucleus. RNA, or ribonucleic acid, is able to leave it. It copies the code and transports it to a ribosome, which is the site of protein synthesis in the cell. The copying process is known as transcription.

There are several versions of RNA. They have a similar structure to DNA but are usually single-stranded and contain uracil instead of thymine. The version that copies and transports information out of the nucleus during protein synthesis is known as messenger RNA. The copying process is based on the idea of complementary bases.

Complementary Base Pairing

There are two pairs of complementary bases in nucleic acids. Adenine on one strand of DNA always bonds to thymine on another strand (or to uracil if a strand of RNA is being made), and vice versa. The bases are said to be complementary. Similarly, cytosine on one strand always binds to guanine on another strand, and vice versa. This feature can be seen in the DNA illustration above.

The messenger RNA that leaves the nucleus contains a base sequence that is complementary to the one in DNA. The two strands of the DNA molecule temporarily separate in the region where messenger RNA is being made. Once the RNA is complete, it separates from the DNA molecule and the strands of DNA reattach.

Ribosomes and Translation

Messenger RNA molecules travel to the ribosomes. Proteins are made of amino acid chains. The amino acids coded for in the DNA are joined together on the ribosomes. Transfer RNA molecules bring the correct amino acids into position according to the base order in the messenger RNA. This process is known as translation.


In a mutation, the order of bases in a region of a DNA molecule is changed. As a result, the RNA that is made from the DNA will also have the wrong sequence of bases. This will in turn cause an altered protein to be made. Mutations are caused by various factors, including certain chemicals and specific types of radiation. In diseases such as SCD, they can have major effects.

This is an overview of protein synthesis in a cell. The letters in the last line represent amino acids.

This is an overview of protein synthesis in a cell. The letters in the last line represent amino acids.

RNA transcribed from DNA is also used for purposes other than protein synthesis. Although the uracil in RNA is not identical in structure to the thymine in DNA, it behaves in a similar way with respect to chemical bonding.

CRISPR and Spacers in Bacteria

In the 1980s, researchers noticed that several species of bacteria contained a strange pattern in part of their DNA. The pattern consisted of repeating sequences of bases alternating with sections with a unique sequence of bases. The researchers called the repeating sequences CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats). The unique sections were referred to as spacers.

The researchers eventually discovered that the spacers in the bacterial DNA were segments of DNA from viruses that had entered the bacteria. The bacteria were maintaining a record of their invaders. This enabled them to recognize the viral DNA if it appeared again and then mount an attack against it. The system is reminiscent of the action of our immune system. The process is important in bacteria because intact viral DNA takes over a bacterial cell and forces it to make and release new viruses. The bacterium is often killed as a result.

Destruction of Viruses by Bacteria

Once the viral DNA is incorporated into the DNA of a bacterium, the bacterium is able to attack that type of virus if it enters the cell again. The "weapon" in the bacterial attack against viruses is a set of Cas (CRISPR-associated) enzymes that cut the viral DNA into pieces, thereby preventing it from overtaking the cell. Enzymes are a type of protein. The steps in the attack are as follows.

  • The viral genes in the bacterial DNA are copied into RNA (via complementary bases).
  • Cas enzymes surround the RNA. The resulting structure resembles a cradle.
  • The cradle travels through the bacterium.
  • When the cradle encounters a virus with the complementary DNA, the RNA attaches to the viral material and the Cas enzymes break it up. This process prevents the viral DNA from harming the bacterium.

Today the term CRISPR also refers to the gene-editing technique in which specific base sequences in a human cell are found and modified. This gene-editing process is also known as CRISPR-Cas9 because an enzyme known as Cas9 is involved in the process.

How Does CRISPR-Cas9 Edit Human Cells?

CRISPR technology in human cells follows a similar pattern to the process in bacteria. In human cells, the RNA and enzymes attack the cell's own DNA instead of the DNA of an invading virus.

The most common form of CRISPR at the moment involves the use of an enzyme called Cas9 and a molecule known as guide RNA. The overall process as it applies to correcting mutations is as follows.

  • The guide RNA contains bases that are complementary to those in the mutated (altered) region of the DNA and therefore binds to this region.
  • By binding to the DNA, the RNA "guides" the molecules of the Cas9 enzyme to the correct place on the altered molecule.
  • The enzyme molecules break the DNA, removing the target section.
  • A harmless virus is used to add the correct strand of nucleotides to the broken area. The strand is incorporated into the DNA as it repairs itself.

The technology has wonderful potential. Some concerns exist about unexpected effects of editing genes and genomes. CRSPR technology has already proved very useful for a particular SCD patient, however, as described later in this article.

CRISPR-Cas9 and Sickle Cell Disease

In 2016, the results of some interesting research into treating SCD with CRISPR were reported. The research was performed by scientists from UC Berkeley, UC San Francisco Benioff Children's Hospital Oakland Research Institute, and the University of Utah School of Medicine.

The scientists have extracted hematopoietic stem cells from the blood of people with sickle cell disease. They have been able to correct the mutations in the stem cells by using the CRISPR process. The plan is to eventually put the edited cells into the bodies of people with SCD. This process has already been done (apparently successfully) in a small number of people by another institution, but the technology is still in the trial stage.

Adding normal stem cells to the body will be useful only if the cells stay alive. To discover whether this is possible, the researchers placed edited hematopoietic stem cells in the bodies of mice. After four months, two to four percent of the mouse stem cells that were examined were the edited version. The researchers say this percentage is likely the minimum level needed to be beneficial for humans.

Unlike other gene-editing methods, it (CRISPR) is cheap, quick and easy to use, and it has swept through labs around the world as a result. Researchers hope to use it to adjust human genes to eliminate diseases, create hardier plants, wipe out pathogens and much more besides.

— Heidi Ledford at

Stanford University Research

Scientists at Stanford University are working towards performing a clinical trial of CRISPR-Cas9 technology for sickle cell disease treatment. (As noted below, trials by another institution have already been performed.) The Stanford researchers plan to edit one of the two problematic hemoglobin genes in a patient's stem cells by replacing it with a normal gene. This would lead to a genetic situation similar to the one found in a carrier of the sickle cell gene. It would also be a less extreme process than editing both genes.

As the quote below indicates, a scientist involved in the research says that the CRISPR-Cas9 process doesn't have to replace all of the damaged stem cells. Normal red blood cells live longer than the damaged ones and soon outnumber them, as long as there aren't too many damaged cells to replace in proportion to the normal ones.

Symptoms of the disease occur only if the proportion of sickled cells in the bloodstream is above 30 percent. If at least 70 percent of the red blood cells are healthy, the patient is symptom-free.

— Dr. Mark Porteus, Stanford University

An Impressive Clinical Trial for Victoria Gray

In November, 2019, edited cells were placed in the body of a sickle cell disease patient named Victoria Gray by doctors at a research institute in Tennessee. Though it's too early to reach definite conclusions, the transplant appears to be helping the patient. Edited cells have stayed alive and have already prevented the attacks of severe pain that Victoria previously experienced.

Though researchers are excited, they say that we need to be cautious. Of course, they and the patient hope that the benefits of the transplant continue and that the person experiences no additional problems, but the outcome of the trial is uncertain at the moment. Though the patient had been experiencing frequent problems before the treatment, it's not unheard of for an SCD patient to experience a period without attacks even without receiving a special treatment. Tests show that the percentage of normal hemoglobin in the patient's blood has greatly increased since the transplant, however.

Recent News About Victoria

In December, 2020—just over a year after the transplant—Victoria was still doing well. She was able to take an airplane flight to visit her husband, who is a member of the National Guard. She had never flown before because she was afraid that it would trigger the sometimes excruciating pain of SCD. This flight caused no problems, however. NPR (National Public Radio) is following Victoria's progress and says that researchers are becoming "increasingly confident that the (treatment) approach is safe."

The research institute has tried their technique in a few other patients. The procedure has been beneficial for them, though the group haven't been studied as long as Victoria. NPR says that on New Year's Eve, 2021, Victoria was still doing well. I haven't seen more recent posts about her, but perhaps no news is good news.

She's (Victoria Gray) doing so well for so long that she's officially no longer in the landmark study she volunteered for...Doctors will still follow her for 15 years to make sure the treatment keeps working and continues to be safe.

— Rob Stein, NPR

Hope for the Future

Some people with SCD might be eager to receive a transplant of genetically corrected stem cells. Scientists need to be cautious, though. Changing the DNA of a living person is a very significant event. Researchers must make sure that the altered stem cells are safe and that there are no off-target effects (unexpected and undesirable side effects).

Multiple clinical trials need to be performed successfully and safely before the new technique can become a mainstream treatment. The wait could be very worthwhile if it helps people with sickle cell disease.


This content is accurate and true to the best of the author’s knowledge and does not substitute for diagnosis, prognosis, treatment, prescription, and/or dietary advice from a licensed health professional. Drugs, supplements, and natural remedies may have dangerous side effects. If pregnant or nursing, consult with a qualified provider on an individual basis. Seek immediate help if you are experiencing a medical emergency.

© 2016 Linda Crampton


Linda Crampton (author) from British Columbia, Canada on September 08, 2017:

Thank you for such a kind comment, Jackie. I appreciate your visit!

Jackie Lynnley from the beautiful south on September 08, 2017:

This would make a great medical pamphlet for the world! So much and such great information. What a terrible disease. Thank you for making it easier to understand.

Linda Crampton (author) from British Columbia, Canada on August 05, 2017:

Thank you very much for the kind comment, Janean.

Janean Overman from Virginia on August 05, 2017:

Excellent hub. Very informative and well approach on the complexities involved with this condition. I personally know people who are affected by this condition and I live with the sickle cell trait. Much appreciation for your sharing.

Linda Crampton (author) from British Columbia, Canada on October 29, 2016:

Hi, Devika. Thank you for the visit and kind comment.

DDE on October 29, 2016:

Hi AliciaC an informative and as always you have a well-researched hub. You enlightened me on a different health issue.

Linda Crampton (author) from British Columbia, Canada on October 23, 2016:

Thanks, Vellur. I hope that a cure for SCD is found soon, too, whether it's due to genome editing or another technique. It would be wonderful to eliminate sickle cell disease and some other unpleasant and horrible diseases from the human population.

Nithya Venkat from Dubai on October 23, 2016:

I hope they come up with a cure for SCD that is safe and effective. Thank you for sharing this in-depth, informative article. Got to know more about this disease and genome editing.

Linda Crampton (author) from British Columbia, Canada on October 22, 2016:

Hi, Faith. Thank you very much for the comment. DNA modification could be very useful in treating medical problems, but I agree that we need to use extreme caution. We live in exciting times!

Faith Reaper on October 22, 2016:

Another stellar hub here that provides great insight into this terrible disease. You covered a lot here and it is all fascinating for sure. I've never fully understood the disease until reading this hub. We've certainly come a long way in being able to alter DNA, but I'm not 100% sure that is a good thing, so extreme caution is necessary in proceeding with such knowledge.

Linda Crampton (author) from British Columbia, Canada on October 19, 2016:

Thanks, Larry. I very much hope that the future does mitigate the effects of SCD.

Larry Rankin from Oklahoma on October 19, 2016:

Fascinating look into how the future could someday mitigate the effects of this disease.

Linda Crampton (author) from British Columbia, Canada on October 19, 2016:

Hi, Manatita. Thanks for the comment and the feedback. There are many possible reasons for a spleen removal, so I don't know which applies to your friend's son. If he has SCD, clumping in a blood vessel going to the spleen and insufficient oxygen going to the organ could damage it, but a medical professional would have to determine how serious this damage is if it's actually present.

There are many factors that may cause a doctor to recommend spleen removal in people even if they don't have SCD, including spleen infection, damage, swelling or rupture, certain blood disorders, a specific autoimmune disease, cysts, or cancer of the spleen. The best thing to do is to query a doctor involved in a case to get a specific reason for a spleen removal.

manatita44 from london on October 19, 2016:

Alicia you write like a scholar. Truly educational and interesting stuff, but hard to follow towards the end. Still, this does not take away from the fact that you do an awesome job.

I discussed this subject today as my friend said that they had removed or would remove her son's spleen. So I was talking to a nurse about why. Are you saying that because of the clumping and the oxygen not getting through, causes damage to the spleen? Is it the infection risks? let me know. Thanks Alicia.

Linda Crampton (author) from British Columbia, Canada on October 19, 2016:

Thanks for commenting, MsDora. I'm very sorry that you lost two students to sickle cell disease. It can be a horrible illness. It's a bit too early to know whether the genome editing technique will be both effective and safe, but the signs so far are good. I'm hoping that the technique will be helpful for other diseases caused by mutations.

Dora Weithers from The Caribbean on October 19, 2016:

Glad to know that there is a cure for SCD and happier still for those who can benefit from it. Lost two students, brother and sister, from the disease. Thanks for giving so many bits of information I had not heard before.

Linda Crampton (author) from British Columbia, Canada on October 19, 2016:

Thanks, Bill. I appreciate your comment a great deal.

Bill Holland from Olympia, WA on October 19, 2016:

Really fascinating. You have the ability to take complex information and simplify it so people like me can understand. Thank you!

Linda Crampton (author) from British Columbia, Canada on October 19, 2016:

Thank you very much, Flourish. The ability to correct mutations is wonderful, but we do need to be cautious. As you say, they could be unintended consequences.

Linda Crampton (author) from British Columbia, Canada on October 19, 2016:

Hi, Bill. I hope to be reading about success in a few years, too. The gene editing process could be very helpful for treating disease. Thanks for the comment.

FlourishAnyway from USA on October 19, 2016:

It's amazing that we've reached the point where we could potentially just "edit" DNA, but I agree with you that care needs to be taken before when altering the DNA of a living person. You never know about unintended consequences. This was marvelously researched and presented.

Bill De Giulio from Massachusetts on October 19, 2016:

Hi Linda. Fascinating article. Thank you for the education. The treatment with genetically corrected stem cells sounds very promising. I hope to be reading about it's success in the next few years. Great job.

Linda Crampton (author) from British Columbia, Canada on October 18, 2016:

No problem, whonu! I appreciate your visits.

whonunuwho from United States on October 18, 2016:

Sorry for the double post, thought the first one did not get placed. whonu

Linda Crampton (author) from British Columbia, Canada on October 18, 2016:

Thank you very much for the comment and for sharing the touching story, whonu. I'm sure the boy appreciated your kindness. You did some lovely things for him. I hope that there is soon a cure for both sickle cell disease and MS.

whonunuwho from United States on October 18, 2016:

This was interesting work my friend. As a teacher for many past years, I had some students in my classes with this disease. It was a very daunting and a sad day when I learned of these children's problems. I remember carrying one child out to eat lunch and taking him to the store fore new shoes. Although it did not help his condition, it did let him know people cared about him. A very sad life for these little ones. Hope some day there is a cure, for MS as well. Thanks for sharing. whonu