The History of Plate Tectonics

Updated on November 9, 2019
Lissa Clason profile image

Melissa graduated from NC State University with a Bachelor's Degree in geology in 2015 and currently works as a geotechnical lab technician.

The major and minor tectonic plates in their present-day configuration.
The major and minor tectonic plates in their present-day configuration.

How Does the Theory of Plate Tectonics Work?

The theory of plate tectonics is a major cornerstone in the field of geology. In this theory, the Earth's crust and upper mantle, together forming a layer called the lithosphere, is divided into several plates. These plates glide over the weaker part of the mantle, called the asthenosphere, over time, and the plates can collide into each other, building large mountain belts like the Himalayas, or one plate is subducted and goes under the other, where it is melted and recycled into new magma.

Plates can also rift apart, creating two or more smaller plates, or they can move past each other. See the diagram below to see the different ways tectonic plates interact with each other. Plate tectonics is a relatively new concept. Our modern idea of it was formulated in the 1960s, but it has its roots in an earlier theory called continental drift.

Divergent boundaries, convergent boundaries, and transform boundaries are the three types of plate boundaries.
Divergent boundaries, convergent boundaries, and transform boundaries are the three types of plate boundaries.

Alfred Wegener and the Theory of Continental Drift

In the early 20th century, Alfred Wegener, a German geophysicist and professor, came up with the theory of continental drift. Wegener traveled a lot during his career as a scientist and his time in the army weather service during World War I, and recorded many observations about the geological features he saw. In the year 1915, he published The Origins of Continents and Oceans, a book which explained three reasons for his continental drift hypothesis:

  • The coastlines of certain continents, like the west coast of Africa and the east coast of South America, match up like pieces of a jigsaw puzzle. When you look at the shapes of the underwater continental shelves, this becomes even more obvious. Wegener found that certain rock units matched on the coastlines of certain continents, and concluded that the continents were once connected in one supercontinent, Pangaea.
  • Wegener noticed that there were fossils of land animals that existed on several continents. These animals could not possibly swim across the vast oceans that separate modern continents. Coal beds were also discovered on Antarctica, formed from plants that grew in warm weather swamps. This made Wegener conclude that Antarctica was once farther north than it is now, away from the south pole.
  • There is evidence of glacial movement in places that nowadays are too warm to be covered by ice. South Africa is warm and dry, yet glacial deposits dot the landscape, and scour marks gouge the bedrock. Glaciers would not survive the journey through the ocean, so it made more sense for Wegener to include a polar ice cap over the area in his model.

Reception of the Continental Drift Theory

Alfred Wegener's theory of continental drift had mixed reviews. Scientists in the southern hemisphere had seen the similarities in the rocks and fossils on both sides of the Atlantic Ocean, so they believed Wegener was correct. However, northern hemisphere scientists had not seen the evidence themselves, so they were more skeptical about the concept.

A glaring flaw in Wegener's theory was that he could not explain how the continents moved around. In his point of view, the continents plowed through oceanic crust like a fork cuts through a piece of cake. Skeptics pointed out that continental crust was not as dense as oceanic crust, and would not survive that kind of force. And where would that force even come from?

Wegener's hypothesis was rejected by the greater scientific community, and he would have faded into obscurity if not for new data that was discovered in the 1950s...

New Technology Leads to the Theory of Plate Tectonics

After World War 2, technology had advanced considerably, and geologists were now able to explore the topography of the Atlantic ocean floor. In the middle of the Atlantic Ocean, Harry Hess and Robert Dietz discovered a long submarine mountain belt called the Mid-Atlantic Ridge. With data on the magnetism of the ocean floor, the scientists had learned that the oceanic crust around this ridge was actually younger than crust close to the continental margins. The youngest crust at the ridge's center cools and falls when it is created, and is pushed aside as more crust is formed. This concept is called seafloor spreading, and it rekindled interest in Alfred Wegener's work. Eventually, the two concepts merged into the theory of plate tectonics.

What is the Cause of Plate Tectonics?

Plates were discovered to be moved by several forces, one of them being seafloor spreading. Scientists later discovered the effect of slab pull, where the weight of denser plates colliding with lighter plates pulls them underneath the lighter plate, sinking into the mantle and disintegrating.

The main force that drives all of the spreading and subducting of plates, the ultimate cause of plate tectonics, is convection currents in the mantle. Heat rises through the mantle from the molten outer core, rising up to create mid-ocean ridges and volcanic hotspots, and where the mantle is downwelling, becoming cooler and heavier, you can find subduction zones.

The motion of magma in the mantle causes plates to move, which causes volcanoes to form and earthquakes to occur along plate boundaries. By analyzing the movement of tectonic plates, you get a window into the inner workings of the Earth.

Convection currents in the mantle cause the motion of the lithosphere's plates.
Convection currents in the mantle cause the motion of the lithosphere's plates.

Plate Tectonics Can Explain Volcanic Island Arcs, Large Mountain Belts, and Seamount Chains

In addition to volcanoes and earthquakes, the theory of plate tectonics can also explain the creation of volcanic island arcs, large mountain belts, and seamount chains.

Volcanic island arcs, like the Aleutian Islands of Alaska, form at convergent boundaries where two oceanic plates collide. One plate bends and slides under the other, forming an oceanic trench where sediment and pieces of crust accumulate in an accretionary wedge. As the plate subducts, the temperature and pressure on it increase, and water is released from minerals in the subducting plate. The release of this water causes the asthenosphere to melt, and the magma from this process rises up into the overlying plate, creating an island arc on the surface.

Large mountain belts like the Himalayas are created in collisions of two continental plates. Because both plates have equal densities and thicknesses, neither one can subduct under the other, and the plates buckle and fold, creating immense mountain belts and high-elevation plateaus.

Seamount chains like the Hawaiian islands are created by the movement of a plate over a hot spot. At a hot spot, magma melts and rises into the overlying plate, producing volcanoes. Since the plate is moving over the hot spot, a chain of volcanoes displaying the movement of the plate will be created. Older volcanoes will be further away from the hot spot, and if they are above the surface, erosion and subsiding of the cooled crust can bring them back down below sea level.

As the Pacific Plate moves northwest, islands in the Hawaiian island chain are created as volcanic islands, and then sink below the water's surface to become seamounts as they age and erode.
As the Pacific Plate moves northwest, islands in the Hawaiian island chain are created as volcanic islands, and then sink below the water's surface to become seamounts as they age and erode.

Plate Tectonics Can Help to Predict Future Continental Configurations

Like the field of history, in the field of geology scientists can look to the past to notice trends and predict future events. Some interesting predictions have come from the theory of plate tectonics, assuming that current plate motions continue:

  • California's landmass west of the San Andreas Fault will continue to slide northwest, eventually bringing Los Angeles to where San Francisco is in 15 million years.
  • Africa will eventually collide with Europe in 50 million years, closing the Mediterranean Sea.
  • Australia will move north and collide with the islands of Indonesia, forming a larger continent several hundred million years from now.
  • Eventually the Pacific Ocean will close together as the Atlantic Ocean widens, forming a new supercontinent known variously as Novopangaea, Amasia, or Pangaea Ultima. This is forecast to happen 250 million years from now.

These predicted events could come to fruition, but who knows? Conditions could change and the world could look totally different from what is predicted. All we can do is hope humans, or whatever evolves from us, are there to see it.

In this prediction, the Atlantic Ocean has reversed direction, shrinking back in on itself and bringing the continents together in a ring around it.
In this prediction, the Atlantic Ocean has reversed direction, shrinking back in on itself and bringing the continents together in a ring around it.

Questions & Answers

    © 2019 Melissa Clason

    Comments

      0 of 8192 characters used
      Post Comment

      No comments yet.

      working

      This website uses cookies

      As a user in the EEA, your approval is needed on a few things. To provide a better website experience, owlcation.com uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

      For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at: https://owlcation.com/privacy-policy#gdpr

      Show Details
      Necessary
      HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
      LoginThis is necessary to sign in to the HubPages Service.
      Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
      AkismetThis is used to detect comment spam. (Privacy Policy)
      HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
      HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
      Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
      CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
      Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the googleapis.com or gstatic.com domains, for performance and efficiency reasons. (Privacy Policy)
      Features
      Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
      Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
      Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
      Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
      Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
      VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
      PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
      Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
      MavenThis supports the Maven widget and search functionality. (Privacy Policy)
      Marketing
      Google AdSenseThis is an ad network. (Privacy Policy)
      Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
      Index ExchangeThis is an ad network. (Privacy Policy)
      SovrnThis is an ad network. (Privacy Policy)
      Facebook AdsThis is an ad network. (Privacy Policy)
      Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
      AppNexusThis is an ad network. (Privacy Policy)
      OpenxThis is an ad network. (Privacy Policy)
      Rubicon ProjectThis is an ad network. (Privacy Policy)
      TripleLiftThis is an ad network. (Privacy Policy)
      Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
      Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
      Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
      Statistics
      Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
      ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
      Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)
      ClickscoThis is a data management platform studying reader behavior (Privacy Policy)