What Advancements in Material Sciences Have Been Made That No One Is Talking About?

Updated on December 5, 2019
1701TheOriginal profile image

Leonard Kelley holds a bachelor's in physics with a minor in mathematics. He loves the academic world and strives to constantly explore it.


Science is moving at an aggressive pace. Oftentimes, it’s too fast for anyone to keep up with, and so some new findings and applications fall between the cracks. Here is but a few of them. It is my intent to update this list as more are uncovered, so check in every once and a while for what I hope you too will find to be an advancement in materials that no one is talking about.

Spinning Sponges

Water is simply amazing. It destroys, it creates, and it is what you and I are mostly made of. To further demonstrate the amazing abilities of water, scientists at Columbia University led by Ozgur Sahin have developed an evaporation powered 100 grams car. Yes, it’s small and not very fast but it is a prototype and the process for its locomotion is amazing. It makes use of 100 “spore coated tapes,” each 4 inches long, which expand and contract as levels of H20 in the air change. A chamber full of the special paper hangs from rings of concentric circles and is wettened, increasing the length of the tape. Half of the ring at any time is enclosed while the other half is exposed to air, allowing evaporation. Now, here is the magic. The wet paper has a center of mass and so does the dry paper, but as evaporation occurs, the center of torque begins to shift so that the two are not in alignment. Add to this the paper curling inward as it dries and you have a further net torque change. As this spin occurs, a rubber band attached to the pivot axis spins and…voila, a vehicle is the result! While no one will be rushing to the store to get one, it could have applications in micromachinery (Tenning, Ornes).


Flat Lens?

One of the technological battles comparable to increasing processor speeds in a computer is the need for a thinner and thinner lens. Many technology fields would benefit from an even lower curvature lens, of which Frederico Capasso and his team at Harvard University accomplished in 2012. They were able to make “microscopic silicon ridges” which caused light to bend in a certain way, depending on the angle of incident. In fact, based on the placement of the ridges you could conceivably get many focal length possibilities. However, the ridges only allow for one wavelength to have high precision, not suitable for any everyday means. But advancements are being made, for in February 2015 the same team was able to get at least some RGB wavelengths to happen at once (Patel "The").


Membrane Manufacturing for Desalination

Believe it or not, Alan Turing of World War II code-breaking and computer logic fame also made a contribution to chemistry. He found an interesting system that is more complex than the typical products/reactants. Certain situations that control the amount of the reactants can lead to products with different features. Applying this to membrane production allowed for a more regulated and controlled pattern than the typical water/organic method gave but allowed for holes that could allow contaminants through. In this Turing-style system, the polymer was mixed with an organic solvent while the chemical that starts the membrane formation was mixed with water and another chemical which reduces the reaction was mixed in another solvent. This water reduced the reaction and based on the amount present one can get dots or even stripes, allowing for better desalination processes (Timmer)


Many advancements are made in high-caliber laboratories with a large amount of funding to back it up. So, imagine when Brad Musselman, a senior at Knox College in Galesburg, submitted an honors project entitled, “Axial Site Reactivity of Multilinear Copper (II) Carboxylate Metalomesogens.” Sounds fun enough, no? It is, for a major advancement in a field that had been around since the 60s was achieved. Metalomesogens are liquid crystals that also have some solid properties but sadly fall apart easily when making compounds out of them. Brad played with the levels of sipper, caprolactam (a nylon ancestor), and a solvent in the hopes of providing the right conditions. These things added to the mix as it was heated produced a color change from blue to brown in the solution that hinted to Brad that the right conditions for the metalomesogen transformation was taking place and so to continue that, some toluene would be added. Once cooled, crystals would form and x-ray diffraction and infrared spectroscopy would later confirm the material was as desired. Such materials can possibly have applications in synthezation of different compounds and reduce waste materials that are often encountered in many industries (Chozen).

Metalomesogens | Source
Metalomesogens | Source

Re-Writable Paper

Imagine lining standard stock paper with a nano particle layering consisting of Prussian blue and titanium dioxide. When this is hit with UV light, electrons exchange between those layers and causes the blue to become white. With a filter on top of this, one could print blue text onto the white paper and within a span of 5 days it will disappear as the paper becomes blue again. Then hit it with UV and voila, white paper again. The best part is that the process can be replicated on the same piece of paper up to 80 times (Peplow).

Polymer Water Purification

Scientists have developed a new filter for water purification that is based off...sugar. Called Beta-cyclodextrin, it is the polymer from which new chains have been built that loop together and retain their porous nature while increasing surface area, leading to purification speeds 15-300 times that of the competition and was able to purify more. And the cost? Matching if not lower than what is out there. Sounds to me like we got a winner (Saxena).

The Ultimate Waterproof Metal

Scientists have developed a metal that is so resistant to water that is bounces off it like a rubber ball. The trick to manufacturing it involves etching different micro and nanoscale designs onto brass, titanium, and platinum at a rate of 1 square inch an hour. The advantages of this process include durability and one of the best water-resistant materials seen yet (Cooper-White).

Works Cited

Cooper-White. "Scientists Male Metal So Waterproof That Droplets Simply Bounce Off." Huffingtonpost.com. Huffington Post, 22 Jan. 2015. Web. 24 Aug. 2018.

Chozen, Pam. “Unpacking an Honors Project.” Knox College Spring 2016: 19-24.

Giller, Geoffrey. “Solar Tries Two.” Scientific American Apr. 2015: 27. Print.

Ornes, Stephen. “Spore Power.” Discover Apr. 2016: 14. Print.

---. “The Lens Descends.” Scientific American May 2015: 22. Print.

Peplow, Mark. "Print, Wipe, Rewrite." Scientific American Jun. 2017. Print. 16.

Saxena, Shalini. "Reusable, sugar-based polymer purifies water fast." arstechnica.com. Conte Nast., 01 Jan. 2016. Web. 22 Aug. 2018.

Tenning, Maria. “Water, Water, Everywhere.” Scientific American Sept. 2015: 26. Print.

Timmer, John. "Alan Turing’s chemistry hypothesis turned into a desalination filter." arstechnica.com. Conte Nast., 05 May 2018. Web. 10 Aug. 2018.

Questions & Answers

    © 2018 Leonard Kelley


      0 of 8192 characters used
      Post Comment

      No comments yet.


      This website uses cookies

      As a user in the EEA, your approval is needed on a few things. To provide a better website experience, owlcation.com uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

      For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at: https://maven.io/company/pages/privacy

      Show Details
      HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
      LoginThis is necessary to sign in to the HubPages Service.
      Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
      AkismetThis is used to detect comment spam. (Privacy Policy)
      HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
      HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
      Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
      CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
      Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the googleapis.com or gstatic.com domains, for performance and efficiency reasons. (Privacy Policy)
      Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
      Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
      Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
      Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
      Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
      VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
      PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
      Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
      MavenThis supports the Maven widget and search functionality. (Privacy Policy)
      Google AdSenseThis is an ad network. (Privacy Policy)
      Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
      Index ExchangeThis is an ad network. (Privacy Policy)
      SovrnThis is an ad network. (Privacy Policy)
      Facebook AdsThis is an ad network. (Privacy Policy)
      Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
      AppNexusThis is an ad network. (Privacy Policy)
      OpenxThis is an ad network. (Privacy Policy)
      Rubicon ProjectThis is an ad network. (Privacy Policy)
      TripleLiftThis is an ad network. (Privacy Policy)
      Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
      Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
      Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
      Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
      ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
      Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)
      ClickscoThis is a data management platform studying reader behavior (Privacy Policy)