What Are Fractals and the History Behind Them?

Updated on January 14, 2019
1701TheOriginal profile image

Leonard Kelley holds a bachelor's in physics with a minor in mathematics. He loves the academic world and strives to constantly explore it.

Source

Mandelbrot

The father of fractals would be Benoit Mandelbrot, a gifted mathematician who dealt with Nazis in his youth and later went to work for IBM. While there, he worked on a noise problem that telephone lines seem to have. It would stack up, accumulate, and ultimately destroy the message being sent. Mandelbrot wanted to find some mathematical model to find the properties of the noise. He looked at the bursts seen and noticed that when he manipulated the signal to change the noise, he found a pattern. It was as if the noise signal was replicated but at a smaller scale. The pattern seen reminded him of a Cantor Set, a construct of math that involved taking the middle third of a length out and repeating for each subsequent length. In 1975, Mandelbrot branded the type of pattern seen a fractal but it didn’t catch on in the academic world for some time. Ironically, Mandelbrot wrote several books on the topic and they have been some of the bestselling math books of all time. And why wouldn’t they be? The pictures generated by fractals (Parker 132-5).

Mandelbrot
Mandelbrot | Source

Properties

Fractals have finite area but infinite perimeter because of the consequence of our change in x as we calculate those particulars for the given shape. Our fractals are not a smooth curve like a perfect circle but instead are rugged, jagged, and full of different patterns that ultimately end up repeating no matter how far you zoom in and also cause our most basic Euclidean geometry to fail. But it gets worse, because Euclidean geometry has dimensions that we can easily relate to but now cannot necessarily apply to fractals. Points are 0 D, a line is 1 D, and so on, but what would a fractal’s dimensions be? It seems like it has area but it is a manipulation of lines, something between 1 and 2 dimensions. Turns out, chaos theory has an answer in the form of a strange attractor, which can have unusual dimensions usually written as a decimal. That leftover portion tells us which behavior the fractal is closer to. Something with 1.2 D would be more line-like than area-like, while a 1.8 would be more area-like than line-like. When visualizing fractal dimensions, people use different colors to distinguish between the planes that are being graphed (Parker 130-1, 137-9; Rose).

The Mandelbrot Set
The Mandelbrot Set | Source

Famous Fractals

Koch snowflakes, developed by Helge Koch in 1904, are generated with regular triangles. You start by removing the middle third of each side and replacing it with a new regular triangle whose sides are the length of the removed portion. Repeat for each subsequent triangle and you get a shape resembling a snowflake (Parker 136).

Sierpinski has two special fractals named after him. One is the Sierpinski Gasket, where we take a regular triangle and connect the midpoints to form 4 total regular triangles of equal area. Now leave the central triangle alone and perform again for the other triangles, leaving each new inner triangle alone. A Sierpinski Carpet is the same idea as the Gasket but with squares instead of regular triangles (137).

As is often in mathematics, some discoveries of a new field have prior work in the field which wasn’t recognized. Koch snowflakes were found decades before Mandelbrot’s work. Another example are Julia Sets, which were discovered in 1918 and were found to have some implications for fractals and chaos theory. They are equations involving the complex plane and complex numbers of the form a+bi. To generate our Julia Set, define z as a+bi then square it and add a complex constant c. Now we have z2+c. Again, square that and add a new complex constant, and so on and so forth. Determine what the infinite results for this are, and then find the difference between each finite step and the infinite one. This generates the Julia Set whose elements don’t have to be connected in order to form(Parker 142-5, Rose).

Of course the most famous fractal set has to be the Mandelbrot Sets. They followed from his work in 1979 when he wanted to visualize his results. Using Julia Set techniques, he looked at those regions between finite and infinite results and got what looked like snowmen. And when you zoomed in at any particular point, you eventually got back to the same pattern. Later worked showed other Mandelbrot Sets were possible and that Julia Sets were a mechanism for some of them (Parker 146-150, Rose).

Works Cited

Parker, Barry. Chaos in the Cosmos. Plenum Press, New York. 1996. Print. 130-9, 142-150.

Rose, Michael. “What Are Fractals?” theconversation.com. The Conservation, 11 Dec. 2012. Web. 22 Aug. 2018.

Questions & Answers

    © 2019 Leonard Kelley

    Comments

      0 of 8192 characters used
      Post Comment

      No comments yet.

      working

      This website uses cookies

      As a user in the EEA, your approval is needed on a few things. To provide a better website experience, owlcation.com uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

      For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at: https://owlcation.com/privacy-policy#gdpr

      Show Details
      Necessary
      HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
      LoginThis is necessary to sign in to the HubPages Service.
      Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
      AkismetThis is used to detect comment spam. (Privacy Policy)
      HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
      HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
      Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
      CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
      Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the googleapis.com or gstatic.com domains, for performance and efficiency reasons. (Privacy Policy)
      Features
      Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
      Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
      Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
      Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
      Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
      VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
      PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
      Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
      MavenThis supports the Maven widget and search functionality. (Privacy Policy)
      Marketing
      Google AdSenseThis is an ad network. (Privacy Policy)
      Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
      Index ExchangeThis is an ad network. (Privacy Policy)
      SovrnThis is an ad network. (Privacy Policy)
      Facebook AdsThis is an ad network. (Privacy Policy)
      Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
      AppNexusThis is an ad network. (Privacy Policy)
      OpenxThis is an ad network. (Privacy Policy)
      Rubicon ProjectThis is an ad network. (Privacy Policy)
      TripleLiftThis is an ad network. (Privacy Policy)
      Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
      Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
      Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
      Statistics
      Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
      ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
      Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)
      ClickscoThis is a data management platform studying reader behavior (Privacy Policy)