What Are Phase Portaits and Phase Space in Chaos Theory?

Updated on October 8, 2018
1701TheOriginal profile image

Leonard Kelley holds a bachelor's in physics with a minor in mathematics. He loves the academic world and strives to constantly explore it.

Source

When you were a student, you may remember different methods for graphing information in physics. We would assign the x-axis and the y-axis with certain units and plot data to gather insight into an experiment we were running. Typically, we like to look at how position, velocity, acceleration, and time in high school physics. But are there other possible methods for graphing, and one you may not have heard of is phase portraits of phase space. What is it, and how does it help scientists?

The Basics

Phase space is a way to visualize dynamic systems that have complex movements to them. We like to have the x-axis be position and the y-axis be either momentum or velocity, for many physics applications. It gives us a way to extrapolate and predict future behavior of the changes in the system, typically represented as some differential equations. But by utilizing a phase diagram, or a graph in phase space, we can observe the motion and perhaps see a potential solution by mapping out all possible paths on a single diagram (Parker 59-60, Millis).

Source

The Pendulum

To see phase space in action, a great example to examine is a pendulum. When you plot the time versus position, you get a sinusoidal graph, showing the back and forth motion as amplitude goes up and down. But in phase space, the story is different. So long as we are dealing with a simple harmonic oscillator (our angle of displacement is rather small) pendulum, aka idealized, we can get a cool pattern. With position as the x-axis and velocity as the y-axis, we start as a point on the positive x-axis, for the velocity is zero and position is a maximum. But once we let the pendulum down, it eventually makes to max velocity in the negative direction, so we have a point on the negative y-axis. If we keep proceeding in this fashion, we eventually arrive back where we started. We made a trip around a circle in a clockwise direction! Now that is an interesting pattern, and we call that line a trajectory and the direction it goes the flow. If our trajectory is closed, like with our idealized pendulum, we call it an orbit (Parker 61-5, Millis).

Now, this was an idealized pendulum. What if I increase the amplitude? We would get an orbit with a bigger radius. And if we graph many different trajectories of a system, we end up with a phase portrait. And if we are getting real technical, we know the amplitude decreases with each successive swing because of energy loss. This would be a dissipative system, and its trajectory would be a spiral going towards the origin. But even all of this is still too clean, for many factors impact the amplitude of a pendulum (Parker 65-7).

If we kept increasing the amplitude of the pendulum, we would eventually reveal some nonlinear behavior. That is what phase diagrams were designed to help with, because they are a doozy to solve analytically. And more nonlinear systems were being uncovered as science progressed, until their presence demanded attention. So, let’s go back to the pendulum. How does it really work? (67-8)

As the pendulum’s amplitude grows, our trajectory goes from a circle to an ellipse. And if the amplitude gets large enough, the bob goes completely around and our trajectory does something odd – the ellipses seem to grow in size and then break and form horizontal asymptotes. Our trajectories are no longer orbits, for they are open at the ends. On top of that, we can start to change the flow, going clockwise or counterclockwise. On top of that, trajectories start to cross over each other are called separatrices and they indicate where we change from types of motion, in this case the change between a simple harmonic oscillator and the continuous motion (69-71).

But wait, there’s more! Turns out, this was all for a forced pendulum, where we offset any energy losses. We haven’t even begun to talk about the dampened case, which has many tough aspects to it. But the message is the same: our example was a good starting point for getting familiar with phase portraits. But something remains to be pointed out. If you took that phase portrait and wrapped it as a cylinder, the edges line up so that the separatrices line up, showing how the position is actually the same and the oscillatory behavior is maintained (71-2).

Pattern Talk

Like other mathematical constructs, phase space has dimensionality to it. That dimension required to visualize the behavior of the object is given by the equation D=2σs, where σ is the number of objects and s is the space they exist in our reality. So, for a pendulum, we have one object moving along a line of one dimension (from its viewpoint), so we need 2D phase space to see this (73).

When we have a trajectory that flows to the center no matter the starting position, we have a sink which demonstrates that as our amplitude decreases, so does our velocity and in many cases a sink shows the system returning to its rest state. If instead we always flow away from the center, we have a source. While sinks are a sign of stability in our system, sources are definitely not because any change in our position changes how we are moving from the center. Anytime we have a sink and a source cross over each other, we have a saddle point, an equilibrium position, and the trajectories that did the crossing over are known as saddles or as separatrix (Parker 74-76, Cerfon).

Another important topic for trajectories is any bifurcation that may occur. This is a matter of when a system goes from stable motion to unstable, much like the difference between balancing on the top of a hill versus the valley below. One can cause a big problem if we fall, but the other doesn’t. That transition between the two states is known as the bifurcation point (Parker 80).

Source

Attractors

An attractor, however, looks like a sink but doesn’t have to converge to the center but instead can have many different locations. The main types are fixed point attractors aka sinks of any location, limit cycles, and torus’s. In a limit cycle, we have a trajectory that falls into an orbit after a portion of flow has passed by, therefore closing off the trajectory. It might not start off well but it will eventually settle down. A torus is a superposition of limit cycles, giving two different period values. One is for the larger orbit while the other is for the smaller one. We call this quasiperiodic motion when the ratio of the orbits is not an integer. One shouldn’t get back to their original position but the motions are repetitive (77-9).

Not all attractors result in chaos, but strange ones do. Strange attractors are a “simple set of differential equations” in which the trajectory converges towards it. They also depend on initial conditions and have fractal patterns. But the strangest thing about them is their “contradictory effects.” Attractors are meant to have trajectories converge, but in this case a different set of initial conditions can lead to a different trajectory. As for the dimension of strange attractors, that can be tough because trajectories don’t cross over, despite how the portrait appears. If they did then we would have choices and the initial conditions would not be so particular to the portrait. We need a dimension larger than 2 if we want to prevent this. But with these dissipative systems and initial conditions, we cannot have a dimension larger than 3. Therefore, strange attractors have a dimension between 2 and 3, therefore not an integer. Its fractal! (96-8)

Now, with all that established, read the next article on my profile to see how phase space plays its role in chaos theory.

Works Cited

Cerfon, Antoine. “Lecture 7.” Math.nyu. New York University. Web. 07 Jun. 2018.

Miler, Andrew. “Physics W3003: Phase Space.” Phys.columbia.edu. Columbia University. Web. 07 Jun. 2018.

Parker, Barry. Chaos in the Cosmos. Plenum Press, New York. 1996. Print. 59-80, 96-8.

Questions & Answers

    © 2018 Leonard Kelley

    Comments

      0 of 8192 characters used
      Post Comment

      No comments yet.

      working

      This website uses cookies

      As a user in the EEA, your approval is needed on a few things. To provide a better website experience, owlcation.com uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

      For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at: https://owlcation.com/privacy-policy#gdpr

      Show Details
      Necessary
      HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
      LoginThis is necessary to sign in to the HubPages Service.
      Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
      AkismetThis is used to detect comment spam. (Privacy Policy)
      HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
      HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
      Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
      CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
      Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the googleapis.com or gstatic.com domains, for performance and efficiency reasons. (Privacy Policy)
      Features
      Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
      Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
      Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
      Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
      Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
      VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
      PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
      Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
      MavenThis supports the Maven widget and search functionality. (Privacy Policy)
      Marketing
      Google AdSenseThis is an ad network. (Privacy Policy)
      Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
      Index ExchangeThis is an ad network. (Privacy Policy)
      SovrnThis is an ad network. (Privacy Policy)
      Facebook AdsThis is an ad network. (Privacy Policy)
      Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
      AppNexusThis is an ad network. (Privacy Policy)
      OpenxThis is an ad network. (Privacy Policy)
      Rubicon ProjectThis is an ad network. (Privacy Policy)
      TripleLiftThis is an ad network. (Privacy Policy)
      Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
      Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
      Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
      Statistics
      Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
      ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
      Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)
      ClickscoThis is a data management platform studying reader behavior (Privacy Policy)