What Are the Physics of Life?

Updated on January 14, 2019
1701TheOriginal profile image

Leonard Kelley holds a bachelor's in physics with a minor in mathematics. He loves the academic world and strives to constantly explore it.


Discussing the origins of life is a contested topic for many. Spirituality differences alone make it a challenge to find any consensus or headway on the matter. For science, it’s just as hard to say exactly how inanimate matter became something more. But that may change soon. In this article, we will examine scientific theories for the physics of life, and what that entails.

Dissipative Adaptation

The theory has its origins with Jeremy England (MIT) who started with one of the most overarching physics concepts known: Thermodynamics. The second law states how the entropy, or disorder, of a system increases as time progresses. Energy is lost to the elements but is conserved overall. England proposed the idea of atoms losing this energy and increasing the entropy of the universe, but not as a chance process but more of a natural flow of our reality. This causes structures to form that grow in complexity. England coined the general idea as dissipation-driven adaptation (Wolchover, Eck).

On the surface, this should seem nuts. Atoms naturally restricting themselves to form molecules, compounds, and eventually life? Shouldn’t it be too chaotic for such a thing to occur, especially on a microscopic and quantum level? Most would agree and thermodynamics didn’t offer much since it deals with nearly perfect conditions. England was able to take the idea of fluctuation theorems developed by Gavin Crooks and Chris Jarynski and see behavior that is far from an ideal state. But to best understand England’s work, let’s look at some simulations and how they operate (Wolchover).


Simulations back up England’s equations. In one take done, a group of 25 different chemicals with varying concentrations, reaction rates, and how outside forces contribute to the reactions, were implemented. The simulations showed how this group would start reacting and eventually would reach a final state of equilibrium where our chemicals and reactants have settled in their activity because of the second law of thermodynamics and the consequence of energy distribution. But England found that his equations predict a “fine-tuning” situation where the energy from the system is utilized by the reactants to the fullest capacity, moving us far from an equilibrium state and into “’rare states of extremal thermodynamic forcing’” of the reactants. The chemicals naturally realign themselves to gather the maximum amount of energy they can from their surroundings by honing in on the resonant frequency which allows for not only more breaking of chemical bonding but also for that energy extraction before dissipating the energy in the form of heat. Living things also force their environments as we take in energy from our system and increase the entropy of the Universe. This is not reversible because we have sent the energy back out and therefore cannot be utilized to undo my reactions, but future dissipation events could, if I wanted. And the simulation showed that the time it takes for this complex system to form, meaning that life might not need as long as we thought to grow. On top of that, the process seems to be self-replicating, much like our cells are, and continues to make the pattern which allows for maximum dissipation (Wolchover, Eck, Bell).

In a separate simulation done by England and Jordan Horowitz created an environment where the energy needed wasn’t easily assessable unless the extractor was in the right set-up. They found that the forced dissipation still ended up happening as chemical reactions were underway because external energy from outside the system fed into the resonance, with reactions happening 99% more than under normal conditions. The extent of the effect was determined by the concentrations at the time, meaning that it is dynamic and changes over time. Ultimately this makes the path of easiest extraction difficult to map out (Wolchover).

The next step would be to scale the simulations to a more Earth-like setting from billions of years ago and see what we get (if anything) using the material that would have been at hand and in the conditions of the time. The remaining question then is how does one get from these dissipation driven situations to a life form that processes data from their environment? How do we get to the biology that we around us? (Ibid)

Dr. England.
Dr. England. | Source


It is that data which drives biological physicists nuts. Biological forms process information and act on it, but it remains murky (at best) as to how simple amino acids could eventually build up to achieve this. Surprisingly, it may be thermodynamics to the rescue again. A little wrinkle in thermodynamics is Maxwell’s Demon, an attempt to violate the Second Law. In it, fast molecules and slow molecules are partitioned on two sides of a box from an initial homogenous mix. This should create a pressure and temperature differential and therefore a gain in energy, seemingly violating the Second Law. But as it turns out, the act of information processing in causing this set-up and the constant effort that entails would itself cause the loss of energy needed to preserve the Second Law (Bell).

Living things obviously utilize information so as we do anything we are expending energy and increasing the disorder of the Universe. And the act of living propagates this, so we could escribe the state of life as an outlet of information exploitation of one’s environment and the self-sustaining it entails while striving to limit our contributions to entropy (lose the least amount of energy). Plus, storing information comes at an energy cost so we must be selective in what we remember and how that will impact our future endeavors at optimization. Once we find the balance between all these mechanisms we may finally have a theory for the physics of life (Ibid).

Works Cited

Ball, Philip. “How Life (And Death) Spring From Disorder.” Wired.com. Conde Nast., 11 Feb. 2017. Web. 22 Aug. 2018.

Eck, Allison. “How Do You Say ‘Life’ in Physics?” nautil.us. NautilisThink Inc., 17 Mar. 2016. Web. 22 Aug. 2018.

Wolchover, Natalie. “First Support for Physics Theory of Life.” quantamagazine.org. Quanta, 26 Jul. 2017. Web. 21 Aug. 2018.

© 2019 Leonard Kelley


    0 of 8192 characters used
    Post Comment

    No comments yet.


    This website uses cookies

    As a user in the EEA, your approval is needed on a few things. To provide a better website experience, owlcation.com uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

    For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at: https://maven.io/company/pages/privacy

    Show Details
    HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
    LoginThis is necessary to sign in to the HubPages Service.
    Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
    AkismetThis is used to detect comment spam. (Privacy Policy)
    HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
    HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
    Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
    CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
    Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the googleapis.com or gstatic.com domains, for performance and efficiency reasons. (Privacy Policy)
    Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
    Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
    Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
    Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
    Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
    VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
    PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
    Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
    MavenThis supports the Maven widget and search functionality. (Privacy Policy)
    Google AdSenseThis is an ad network. (Privacy Policy)
    Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
    Index ExchangeThis is an ad network. (Privacy Policy)
    SovrnThis is an ad network. (Privacy Policy)
    Facebook AdsThis is an ad network. (Privacy Policy)
    Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
    AppNexusThis is an ad network. (Privacy Policy)
    OpenxThis is an ad network. (Privacy Policy)
    Rubicon ProjectThis is an ad network. (Privacy Policy)
    TripleLiftThis is an ad network. (Privacy Policy)
    Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
    Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
    Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
    Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
    ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
    Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)
    ClickscoThis is a data management platform studying reader behavior (Privacy Policy)