What Are the Different States of Hydrogen?

Updated on January 7, 2020
1701TheOriginal profile image

Leonard Kelley holds a bachelor's in physics with a minor in mathematics. He loves the academic world and strives to constantly explore it.

Source

The importance of hydrogen for our lives is something we don’t think about but can easily accept. You drink it when it’s bonded to oxygen, otherwise known as water. It’s the first fuel source for a star as it radiates heat, allowing life as we know it to exist. And it was one of the first molecules to form in the Universe. But maybe you are not familiar with the different states of hydrogen. Yes, it’s related to the state of the matter, like a solid/liquid/gas, but more elusive classifications that one may not be familiar with but are just as important will be key here.

Molecular Form

Hydrogen in this state is in a gaseous phase and rather interestingly is a dual-atomic structure. That is, we represent it as H­2, with two protons and two electrons. No neutrons seems odd, right? It should be, because hydrogen is rather unique with this regard in that its atomic format doesn’t have a neutron. This does give it some fascinating properties such as a fuel source and its ability to bond to many different elements, the most relevant to us being water (Smith).

Metallic Form

Unlike our gaseous molecular hydrogen, this form of hydrogen is pressurized to the point that it becomes a liquid with special electrical conductive properties. That’s why it’s called metallic – not because of a literal comparison but because of the ease that electrons move about. Stewart McWilliams (University of Edinburgh) and a joint-U.S./China team looked into the properties of metallic hydrogen by using lasers and diamonds. Hydrogen is placed between two layers of diamonds in close proximity to each other. By vaporizing the diamond, sufficient pressure is generated up to 1.5 million atms and temperatures reach 5,500 degrees Celsius. By observing the light absorbed and emitted during this, properties of the metallic hydrogen could be discerned. It is reflective like metals are and is “15 times denser than hydrogen chilled to 15K” which was the temperature of the initial sample (Smith, Timmer, Varma).

While metallic hydrogen’s format makes it an ideal energy device for sending or storing, it’s difficult to make because of those pressure and temperature requirements. Scientists wonder if perhaps adding some impurities to molecular hydrogen could make the transition to metallic easier to coerce, for if the bonding between the hydrogens is altered then the physical conditions required to change into metallic hydrogen should be altered also, perhaps for the better. Ho-kwang Mao and team attempted this by introducing argon (a noble gas) to molecular hydrogen to create a weakly bounded (but under extreme pressure at 3.5 million atms) compound. When they examined the material in the diamond configuration from before, Mao was surprised to find that the argon actually made it harder for the transition to occur. The argon pushed the bonds further apart, reducing the interplay required for metallic hydrogen to form (Ji).

Ho-kwang Mao's set-up for metallic hydrogen production.
Ho-kwang Mao's set-up for metallic hydrogen production. | Source

Clearly, mysteries still exist. One that scientists did narrow down was the magnetic properties of metallic hydrogen. A study by Mohamed Zaghoo (LLE) and Gilbert Collins (Rochester) looked at the conductivity of metallic hydrogen to see its conductive properties in relation to the dynamo-effect, the way our planet generates magnetic field by the movement of material. The team didn’t use diamonds but instead the OMEGA laser to strike a hydrogen capsule at high pressure as well as temperature. They were then able to see the minute movement of their material and capture magnetic data. This is insightful, for the conditions required to make metallic hydrogen are best found in the Jovian planets. Huge reservoirs of hydrogen are under sufficient pressure and heat to create the special material. With this large amount of it and the constant churning of it, a massive dynamo-effect is developed and so with this data scientists can build better models of these planets (Valich).

The interior of Jupiter?
The interior of Jupiter? | Source

Dark Form

With this format, hydrogen doesn’t display metallic nor gaseous properties. Instead, this is something in the middle of them. Dark hydrogen doesn’t send out light nor does it reflect it (hence the dark) like molecular hydrogen, but instead sheds thermal energy like metallic hydrogen does. Scientists first got the clues for this via the Jovian planets (again), when models were unable to account for the excessive heat they were shedding. Models showed molecular hydrogen on the exterior layers with metallic below it. Within these layers, pressures should be sufficiently high to produce dark hydrogen and make the heat needed to match observations while remaining invisible to sensors. As for seeing it on Earth, remember that study by McWilliams? Turns out, when they were around 2,400 degrees Celsius and around 1.6 million atm, they noticed their hydrogen began displaying properties of both metallic and molecular hydrogen – a semi-metallic state. Where else this form is as well as its applications are still unknown at this time (Smith).

So remember, every time you take a sip of water or breath in, a little bit of hydrogen enters you. Think about its different formats and how miraculous it is. And there are so many more elements out there too…

Works Cited

Ji, Cheng. “Argon is not the ‘dope’ for metallic hydrogen.” Innovations-report.com. innovations-report, 24 Mar. 2017. Web. 28 Feb. 2019.

Smith, Belinda. “Scientists discover new ‘dark’ state of hydrogen.” Cosmosmagazine.com. Cosmos. Web. 19 Feb. 2019.

Timmer, John. “80 Years late, scientists finally turn hydrogen into a metal.” Arstechnica.com. Conte Nast., 26 Jan. 2017. Web. 19 Feb. 2019.

Valich, Lindsey. “Researchers unravel more mysteries of metallic hydrogen.” Innovations-report.com. innovations-report, 24 Jul. 2018. Web. 28 Feb. 2019.

Varma, Vishnu. “Physicists make metallic hydrogen in the lab for the first time.” Cosmosmagazine.com. Cosmos. Web. 21 Feb. 2019.

Questions & Answers

    © 2020 Leonard Kelley

    Comments

      0 of 8192 characters used
      Post Comment

      No comments yet.

      working

      This website uses cookies

      As a user in the EEA, your approval is needed on a few things. To provide a better website experience, owlcation.com uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

      For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at: https://owlcation.com/privacy-policy#gdpr

      Show Details
      Necessary
      HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
      LoginThis is necessary to sign in to the HubPages Service.
      Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
      AkismetThis is used to detect comment spam. (Privacy Policy)
      HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
      HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
      Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
      CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
      Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the googleapis.com or gstatic.com domains, for performance and efficiency reasons. (Privacy Policy)
      Features
      Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
      Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
      Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
      Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
      Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
      VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
      PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
      Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
      MavenThis supports the Maven widget and search functionality. (Privacy Policy)
      Marketing
      Google AdSenseThis is an ad network. (Privacy Policy)
      Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
      Index ExchangeThis is an ad network. (Privacy Policy)
      SovrnThis is an ad network. (Privacy Policy)
      Facebook AdsThis is an ad network. (Privacy Policy)
      Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
      AppNexusThis is an ad network. (Privacy Policy)
      OpenxThis is an ad network. (Privacy Policy)
      Rubicon ProjectThis is an ad network. (Privacy Policy)
      TripleLiftThis is an ad network. (Privacy Policy)
      Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
      Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
      Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
      Statistics
      Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
      ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
      Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)
      ClickscoThis is a data management platform studying reader behavior (Privacy Policy)