How Does a Space Elevator Work?

Updated on May 17, 2018
1701TheOriginal profile image

Leonard Kelley holds a bachelor's in physics with a minor in mathematics. He loves the academic world and strives to constantly explore it.

Nanotube | Source

In an age where space travel is moving towards the private sector, innovations begin to surface. Newer and cheaper ways to get into space are being pursued. Enter the space elevator, a cheap and efficient way to get into space. It is like a standard elevator in a building, but with the exit floors being low-Earth-orbit for tourists, geosynchronous orbit for communication satellites, or high-Earth-orbit for other spacecraft (Lemley 34). The first person to develop the space elevator concept was Konstantin Tsiolkovsky in 1895, and over the years more and more have surfaced. None have come to fruition because of technological shortcomings and lack of funds (34-5). With the invention of carbon nanotubes (cylindrical tubes that have a tensile strength 100 times that of steel at 1/5 its weight) in 1991, the elevator took a step closer to reality (35-6).

Cost Projections

In an outline created by Brad Edwards in 2001, the elevator would cost $6-$24 billion (36) with each pound lifted to cost about $100 compared to the space shuttle’s $10,000 (34). This is merely a projection, and it is important to see how other projections panned out. The shuttle was estimated to cost $5.5 million per launch and was actually over 70 times that amount, while the International Space Station was projected at $8 billion and actually cost over ten times that amount (34).

Platform | Source

Cables and Platform

In Edward’s outline, two cables will be spooled into a rocket and launched into geosynchronous orbit (about 22,000 miles up). From there, the spool will unwind with both ends extending to high-orbit and low-orbit with the rocket being the center of gravity. The highest point the cable will reach is 62,000 miles up with the other end extending to the Earth and being secured to a floating platform. This platform will most likely be a refurbished oil-rig and will serve as a power source for the climbers, aka the ascent module. Once the spools have fully unfurled, the rocket- housing would then go to the top of the cable and be the basis for a counterweight. Each of these cables would be made of fibers that are 20 microns in diameter that will be adhered to a composite material (35-6) The cable would be 5 cm thick on the Earth side and about 11.5 cm thick in the middle (Bradley 1.3).

Climber | Source
Counterweight | Source


Once the cables have fully unfurled, a ”climber” would go from the base up the ribbons and fuse them together using wheels like a printing press does until it got to the end and joined the counterweight (Lemley 35). Every time a climber goes up, the ribbon's strength increases by 1.5% (Bradley 1.4). Another 229 of these climbers would go up, each carrying two additional cables and cross-linking them at intervals with polyester tape to the growing main cable until it would be about 3 feet in width. The climbers would remain at the counterweight until the cable is deemed safe, then they can safely travel back down the cable. Each of these climbers (about the size of an 18 wheeler) can carry about 13 tons at 125 miles per hour, can reach geosynchronous orbit in about a week, and will receive their power from “photovoltaic cells” that receive laser signals from the floating platform as well as solar power as a backup. Other laser bases will exist around the world in the event of inclement weather (Shyr 35, Lemley 35-7).

Problems and Solutions

At the moment, many aspects of the plan require some technological advances that have not materialized. For example, a problem with the cables is actually creating them. It is difficult to make carbon nanotubes in a composite material like polypropylene. A roughly 50/50 mix of the two is required. (38). When we go from the small scale to the large, we lose the properties that make the nanotubes ideal. Also, we can barely manufacture them in lengths of 3 centimeters, much less the thousands of miles that would be needed (Scharr, Engel).

In October of 2014, a possible replacement material for the cable was found in liquid benzene put under large pressure (200,000 atm) and then slowly released into normal pressure. This causes the polymers to form tetrahedral patterns much like a diamond and thus give it an increase in strength though the threads are currently only three atoms wide. The Vincent Crespi Laboratory team at Penn State came up with the find and is making sure that no defects are present before further exploring this option (Raj, CBC News).

Another issue is space junk colliding with the elevator or the cables. To compensate, it has been proposed that the floating base can move so that the debris can be avoided. This will also address oscillations, or vibrations in the cable, which will be countered by a dampening motion at the base (Bradley 10.8.2). Also, the cable can be made to be thicker in the higher-risk areas, and regular maintenance can be done on the cable to patch tears. Additionally, the cable could be made in a curved fashion rather than flat strands, thus allowing space junk to be deflected off the cable (Lemley 38, Shyr 35).

Another problem facing the space elevator is the laser-power system. Currently, nothing exists that can transmit the 2.4 megawatts required. Improvements in that field are promising, however (Lemley 38). Even if it could be powered, lightning discharges could short out the climber, so building it in a low-strike zone is the best bet (Bradley 10.1.2).

To prevent the cable from breaking because of meteor strikes, curvature would be designed into the cable for some strength and reduction in damage (10.2.3). An additional feature that the cables will have to protect them will be a special coating or a thicker fabrication to face erosion from acidic rain and from radiation (10.5.1, 10.7.1). A repair climber can continually replenish this coating and also patch the cable when needed (3.8).

And who will venture into this new and unprecedented field? Japanese company Obayashi is planning a 60,000-mile long cable that would be capable of sending up to 30 people at 124 miles-per-hour. They feel that if the tech can finally develop they will have a system by 2050 (Engel).


That being said, many practical reasons exist for having the space elevator. Currently, we have limited access to space with a select few actually making it. Not only that but it is hard to recover objects from orbit, for you must rendezvous with the object or wait for it to fall back to Earth. And let's face it, space travel is risky, and everyone takes their failures poorly. With the space elevator, it is a cheaper way to launch cargo per pound, as mentioned earlier. It can be used as a way to have manufacturing done in zero-G easier. Also, it will make space tourism and satellite deployment a much cheaper venture and thus more accessible. We can easily repair rather than replace satellites, adding to further savings (Lemley 35, Bradley 1.6).

In fact, costs for various activities would decrease 50-99%. It will give scientists the ability to perform meteorological and environmental studies as well as allowing for new materials in microgravity. We can also clean up space debris easier. With the speeds achieved at the top of the elevator, it will make any craft released at that point able to travel to asteroids, the Moon or even Mars. This opens up mining opportunities and further space exploration (Lemley 35, Bradley 1.6). With these benefits in mind, it is clear that the space elevator, once fully developed, will be the way of the future to space horizons.

Works Cited

Bradley C. Edwards. "The Space Elevator". (NIAC Phase I Final Report) 2000.

CBC News. "Diamond Thread Could Make Space Elevator Possible." CBC News. CBC Radio-Canada, 17 Oct. 2014. Web. 14 Jun. 2015.

Engel, Brandon. "Outer-space an Elevator Ride Away Thanks to Nanotech?" Nanotechnology Now. 7th Wave Inc., 04 Sept. 2014. Web. 21 Dec. 2014.

Lemley, Brad. "Going Up." Discover June 2004: 32-39. Print.

Raj, Ajai. "These Crazy Diamond Nanothreads Might Be The Key to Space Elevators." Yahoo Finance. N.p., 18 Oct. 2014. Web. 17 Nov. 2014.

Scharr, Jillian. "Space Elevators On Hold At Least Until Stronger Materials Are Available, Experts Say." The Huffington Post., 29 May 2013. Web. 13 June 2013.

Shyr, Luna. "Space Elevator." National Geographic July 2011: 35. Print.

© 2012 Leonard Kelley


    0 of 8192 characters used
    Post Comment

    No comments yet.


    This website uses cookies

    As a user in the EEA, your approval is needed on a few things. To provide a better website experience, uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

    For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at:

    Show Details
    HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
    LoginThis is necessary to sign in to the HubPages Service.
    Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
    AkismetThis is used to detect comment spam. (Privacy Policy)
    HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
    HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
    Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
    CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
    Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the or domains, for performance and efficiency reasons. (Privacy Policy)
    Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
    Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
    Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
    Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
    Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
    VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
    PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
    Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
    MavenThis supports the Maven widget and search functionality. (Privacy Policy)
    Google AdSenseThis is an ad network. (Privacy Policy)
    Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
    Index ExchangeThis is an ad network. (Privacy Policy)
    SovrnThis is an ad network. (Privacy Policy)
    Facebook AdsThis is an ad network. (Privacy Policy)
    Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
    AppNexusThis is an ad network. (Privacy Policy)
    OpenxThis is an ad network. (Privacy Policy)
    Rubicon ProjectThis is an ad network. (Privacy Policy)
    TripleLiftThis is an ad network. (Privacy Policy)
    Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
    Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
    Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
    Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
    ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
    Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)
    ClickscoThis is a data management platform studying reader behavior (Privacy Policy)