What Are Super-Atoms?

Updated on March 1, 2019
1701TheOriginal profile image

Leonard Kelley holds a bachelor's in physics with a minor in mathematics. He loves the academic world and strives to constantly explore it.

Superatomic crystals
Superatomic crystals | Source

When we talk about different atoms, we are making distinctions between three different quantities: the number of protons (positively charged particles), neutrons (neutrally charged particles), and electrons (negatively charged particles) contained within. The nucleus is the central body of an atom and is where neutrons and protons are located. Electrons "orbit" the nucleus like a planet around a sun but in a cloud full of probability as to their exact "orbit." It is how much of each particle that we have that will determine the status of the atom. For example, with a nitrogen atom versus an oxygen atom, we take note of how many of each particle is in each atom (for nitrogen, it is 7 of each and for oxygen, it is 8 of each). Isotopes, or versions of an atom where it has different amounts of the particles from the main atom, also exist. But recently, it was discovered that under certain conditions, you can get a group of atoms to act collectively like a “super atom.”

This super atom has a nucleus made up of a collection of the same type of atom, with all the groupings of protons and neutrons congregating at the center. The electrons, however, migrate and form a “closed shell” around the nucleus. This is when the orbital level that the outer-most electrons exist in is stable and is around the nucleus of the atoms. Thus, the group of nuclei is surrounded by electrons and is collectively known as a super atom.

But do they exist outside of theory? A. Welford Castlenar at Penn State and Shiv N. Khama at Virginia Commonwealth created the technique for generating such particles. Using aluminum atoms, they caused them to merge together with a combination of laser polarization (endowing them with a certain amount of energy as well as position and phase change) and a pressurized stream of helium gas. Combined, it traps the nuclei and conditions it to be in a stable configuration of a superatom (16).

Using this technique, special compounds can be created. For example, aluminum is used in rocket fuel as an additive. It increases the amount of thrust that is propelling the rocket, but when it is introduced to oxygen, the aluminum bonds with the fuel break down, reducing the ability to synthesize in ample amounts (aka maximization of conditions). However, a super atom with 13 aluminum atoms and an extra electron does not have this reaction to oxygen, so it could be a perfect solution (16). Who knows what else could be around the corner in this exciting new field of study. Unfortunately, a barrier to this new field is the ability to synthesize the superatoms. It is not a simple process and therefore is cost-prohibitive, but one day it may be and who knows what applications will be presented to us.

A picture of a cluster of 13 aluminum atoms as a superatom.
A picture of a cluster of 13 aluminum atoms as a superatom. | Source

And can superatoms form molecules? For sure, as demonstrated by Xavier Roy from Columbia University. Using superatoms made of 6 cobalt atoms and 8 selenium atoms, he and his team were able to form simple molecules - two to three superatoms per molecule. And to bond the superatoms, other atoms were brought in that helped satisfy the electron requirements needed. No one knows yet what uses they could be used for but the potential for new science here is staggering (Aron).

Take for example Ni2(acac)3+, formed when Nickel(II) Acetylacetonate, a type of salt, was placed in a mass spectrometer and put under electrospray ionization. This coerced the salt to form into superatoms as voltages ramp up, and these were sent to nitrogen molecules to examine their features. Those ions formed with Ni2O2 remaining as the central core superatomic feature of it. Interestingly, the features of the ion make it s great candidate as a catalyst, giving it an edge in exploiting C-C, C-H, and C-O bonds ("Superatomic").

And then there are superatomic crystals made up of C60 clusters. Together, the clusters have hexagonal and pentagonal patterns within the shape, causing some rotational properties in some and other times non-rotational properties in others. Not too surprisingly, those rotational clusters do not hold onto heat well but the fixed ones conduct it well. But having a mix of this doesn't make for ideal thermal conditions, but maybe this has a potential use for future scientists...(Kulick)

Works Cited

Aron, Jacob. "First superatom molecules pave way for new breed of electronics." Newsscientist.com. Reed Business Information Ltd., 20 Jul. 2016. Web. 09 Feb. 2017.

Kulick, Lisa. "Researchers design solids that control heat with spinning superatoms." innovations-report.com. innovations-report, 07 Sept. 2019. Web. 01 Mar. 2019.

Stone, Alex. “Super-atoms.” Discover: Feb. 2005. 16. Print.

"Superatomic Nickel core and unusual molecular reactivity." innovations-report.com. innovations report, 27 Feb. 2015. Web. 01 Mar. 2019.

© 2013 Leonard Kelley


    0 of 8192 characters used
    Post Comment
    • 1701TheOriginal profile imageAUTHOR

      Leonard Kelley 

      7 years ago

      Thanks, glad you liked it.

    • VanillaBull profile image


      7 years ago

      Well done on writing this interesting and informative article.


    This website uses cookies

    As a user in the EEA, your approval is needed on a few things. To provide a better website experience, owlcation.com uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

    For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at: https://maven.io/company/pages/privacy

    Show Details
    HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
    LoginThis is necessary to sign in to the HubPages Service.
    Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
    AkismetThis is used to detect comment spam. (Privacy Policy)
    HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
    HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
    Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
    CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
    Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the googleapis.com or gstatic.com domains, for performance and efficiency reasons. (Privacy Policy)
    Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
    Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
    Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
    Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
    Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
    VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
    PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
    Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
    MavenThis supports the Maven widget and search functionality. (Privacy Policy)
    Google AdSenseThis is an ad network. (Privacy Policy)
    Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
    Index ExchangeThis is an ad network. (Privacy Policy)
    SovrnThis is an ad network. (Privacy Policy)
    Facebook AdsThis is an ad network. (Privacy Policy)
    Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
    AppNexusThis is an ad network. (Privacy Policy)
    OpenxThis is an ad network. (Privacy Policy)
    Rubicon ProjectThis is an ad network. (Privacy Policy)
    TripleLiftThis is an ad network. (Privacy Policy)
    Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
    Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
    Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
    Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
    ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
    Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)
    ClickscoThis is a data management platform studying reader behavior (Privacy Policy)